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The existence of social learning has been confirmed in diverse taxa, from apes to guppies. In order to
advance our understanding of the consequences of social transmission and evolution of behaviour,
however, we require statistical tools that can distinguish among diverse social learning strategies. In
this paper, we advance two main ideas. First, social learning is diverse, in the sense that individuals
can take advantage of different kinds of information and combine them in different ways. Examining
learning strategies for different information conditions illuminates the more detailed design of social
learning. We construct and analyse an evolutionary model of diverse social learning heuristics, in
order to generate predictions and illustrate the impact of design differences on an organism’s fitness.
Second, in order to eventually escape the laboratory and apply social learning models to natural
behaviour, we require statistical methods that do not depend upon tight experimental control.
Therefore, we examine strategic social learning in an experimental setting in which the social
information itself is endogenous to the experimental group, as it is in natural settings. We develop
statistical models for distinguishing among different strategic uses of social information. The
experimental data strongly suggest that most participants employ a hierarchical strategy that uses
both average observed pay-offs of options as well as frequency information, the same model predicted
by our evolutionary analysis to dominate a wide range of conditions.

Keywords: cultural evolution; social learning; quantitative methods
1. INTRODUCTION
Under a broad definition, social learning is common in
nature. The behaviour of conspecifics influences
individual behaviour through modification of the
environment, emulation of goals and imitation of
patterns (cf. Whiten & Ham 1992). This psychological
set of distinctions has directed years of research in
animal behaviour, especially the study of social learning
in non-human apes. Distinguishing between emulation
and imitation, and the interaction of the two (Horner &
Whiten 2005), has generated a literature testifying to
the breadth and diversity of social learning in nature
(Fragaszy & Perry 2003).

More recent high-profile experiments with chim-
panzees (Whiten et al. 2005, 2007) have demonstrated
that short-lived traditions can evolve in chimpanzee
social groups, backing up studies that claim that
behavioural variation among wild populations of
chimpanzees are ‘cultural’ (Boesch & Tomasello
1998; Whiten et al. 1999; Boesch 2003). While the
finding of short-lived socially transmitted traditions
may not be surprising to students of Galef ’s rat
experiments (Galef & Whiskin 1997), the findings
suggest that the time may be right to attempt a more
tribution of 11 to a Theme Issue ‘Cultural transmission and
ution of human behaviour’.
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serious exchange between the evolutionary anthro-

pology literature on social learning—which emphasizes

a toolbox of social learning strategies, such as majority

rule conformity and pay-off-biased learning (Boyd &

Richerson 1985; Henrich & McElreath 2003)—and the

animal literature—which tends to emphasize the

existence or not of culture.

There are at least two good reasons to try. First, non-

human animals may also have special-purpose social

learning strategies that combine and recombine

different kinds of social information, yet usually no

effort is made to look for these (Laland 2004). Finding

such cases of analogy (or possibly homology, in the case

of other apes) would potentiate advances in the general

understanding of the evolution of adaptations for

processing social information. Second, many biologists

and anthropologists remain sceptical of the evidence

of animal, and especially great ape, culture (Laland &

Janik 2006). This is partly a result of the difficulty

of inferring patterns of learning from cross sections of

behavioural variation. However, statistical tools

developed to study dynamic learning in human groups

can be leveraged to study diverse social learning

strategies in other animals, as well.

In this paper, we illustrate an approach for analysing

different strategies for combining social cues from

multiple conspecifics, in less poorly controlled settings.
This journal is q 2008 The Royal Society
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We use a stylized evolutionary model to generate
broad predictions for which of several candidate
strategies we expect to find in nature and under what
conditions. We then apply these stylized predictions to
a laboratory experiment that allows participants great
flexibility in from whom and how they learn. Instead of
asking if social learning occurs, we develop likelihood
models that allow us to ask how participants socially
learn. While the precise example we present uses
very detailed information, the same approach can be
applied to more naturalistic contexts, in which
incomplete time series or purely cross-sectional data
are all that are available.

While neither the appreciation of strategic diversity
nor our model-based approach is particularly new in
itself, we think the combination is of value. The key
insight is that each social learning strategy implies
different outcomes, under at least some sets of available
information, both for each individual and entire groups
of individuals. This is not a new point (Cavalli-Sforza &
Feldman 1981; Boyd & Richerson 1985; Galef &
Whiskin 1997), but statistical approaches are usually
not up to the task of exploring it adequately. Those who
do study distinctions among strategies may be inclined
to rely upon highly controlled and artificial experi-
ments. Even when an experimenter is clever enough to
design a series of treatments that can carefully
distinguish among diverse strategies in the laboratory,
scientists will still debate the lessons of behaviour in the
wild. In order to resolve animal culture debates and
gain a more detailed behavioural understanding of
social learning, whether in humans or other animals,
we will need analytical approaches that do not require
precise experimental control of social information.
Another reason to develop statistical methods for less
controlled contexts is that part of the action in social
learning is evolution of behaviour, and experiments
that control social information do not allow us to study
these population-level effects nor how strategies are
adapted to them.

The general approach we suggest is to (i) nominate
a series of candidate social learning strategies, (ii)
translate each of these into an expression for the
conditional probability of behaviour, given an infor-
mational context for an individual animal, (iii) use these
expressions to generate likelihoods of observing field or
laboratory data, and (iv) compare the fits of these
strategies to the data with information theoretic criteria,
such as Akaike information criterion (AIC) or Bayesian
information criterion (BIC). Approaching the problem
as a task of discriminating among a toolbox of potential
strategies, rather than a task of demonstrating the
existence of social learning, may allow all of us to
squeeze more from both our experiments and field
studies than we previously imagined.
2. MANY WAYS TO LEARN SOCIALLY
There was a time when biology wondered if natural
selection occurred. Now no one—within evolutionary
biology—seriously questions the existence of natural
selection as an evolutionary force. Instead, we debate
its relative strength and character in different
environmental and biological contexts. Both sexual
Phil. Trans. R. Soc. B (2008)
(Kokko et al. 2006) and social selection (Frank 2006)
have generated special literatures of theory and
evidence that testify to the subtle diversity of the
action of natural selection. One could seriously say
that there are many natural selections.

In a similar sense, there are many social learnings.
Psychologists and animal behaviourists have long
recognized taxonomic distinctions between, for
example, social facilitation and imitation (Zajonc
1965). But many of the highest profile publications
still address basic existence questions, asking if other
animals have human-like social learning and human-
like traditions or culture (Whiten et al. 2005). These
publications are probably taking the right rhetorical
approach. Many anthropologists remain unconvinced
that chimpanzee or crow culture is much like human
culture (Boesch 2003).

However, many scientists have enough interest in
the details of social learning in humans, as well as other
animals, to step aside the ‘is it human enough?’ debate.
As social learning is diverse, it has diverse effects. Some
mechanisms generate rather short-lived traditions, if
any at all (Galef & Whiskin 1997). Human cultural
traditions can be both ephemeral and demonstrate
tremendous inertia (Richerson & Boyd 2005), depend-
ing in part upon the strategic diversity of social learning
and the details of the social context (Cavalli-Sforza &
Feldman 1981; Boyd & Richerson 1992). Studying the
mechanistic and algorithmic diversity of social learning
will be just as important as arguing that it exists, and
our hunch is that most researchers in both anthro-
pology and animal behaviour are prepared to move in
this direction.

In this section, we briefly review evolutionary work
on structurally different social learning strategies.
Most of this literature has been concerned with
human social and cultural learning (Boyd & Richerson
1985; Henrich & McElreath 2003), but there is no
reason these models cannot apply to other organisms
(Laland 2004). Before moving on to apply these
different strategies to experimental data, we hope
to convince the reader that it is worth asking, for
example, if chimpanzees also use majority rule social
learning or are guided by observed cues of others’
success. While no single strategy is imagined to
dominate at all times nor to exist in the absence of
individual learning, the dynamic consequences of each
strategy can be appreciated most easily by first
examining them in isolation.

(a) Unbiased social learning

One of the simplest social learning strategies is to select
a random target individual and copy his or her
behaviour. We call this kind of social learning
‘unbiased’, as it tends to maintain the frequencies of
different behaviour (Cavalli-Sforza & Feldman 1981;
Boyd & Richerson 1985). One adaptive advantage of
unbiased social learning is economizing on individual
learning costs (Boyd & Richerson 1985).

(b) Frequency-dependent social learning
When individuals can sample more than one con-
specific, a large family of frequency-dependent
strategies become possible. The most commonly

http://rstb.royalsocietypublishing.org/
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Figure 1. (a,c) Instantaneous and (b,d ) evolutionary dynamics of frequency-dependent and pay-off-biased social learning.
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studied of these is positive frequency dependence, which
preferentially copies the most common behaviour
variants in the sample. Such a strategy has very deep
intellectual roots, being studied formally at least as far
back as 1785, in Condorcet’s jury theorem (see Estlund
1994). Evolutionary treatments of positive frequency
dependence, ‘conformity’, emphasize its adaptive value
for individuals (Boyd & Richerson 1985; Henrich &
Boyd 1998).

Figure 1a,b plots the instantaneous and evolutionary
dynamics of positive frequency dependence. In
figure 1a, for any frequency of one of two alternative
learned behaviours on the horizontal axis, the solid
curve gives the expected frequency (or probability of
adoption) after social learning. If p is the value on the
horizontal axis, then pCpð1KpÞð2pK1Þ is the value
on the vertical (Boyd & Richerson 1985—we re-derive
this function in §2e). The dashed line illustrates the
expected frequency under unbiased social learning. In
figure 1b, the evolution of behaviour within a
population of learners who practice positive frequency
dependence depends on whether the initial frequency
of behaviour is below or above one-half. Positive
frequency dependence tends to increase the more
common variants and decrease the others.
(c) Pay-off-biased social learning

When individuals have information about the pay-offs
of others, it is possible to use these cues of success to
adaptively bias social learning. Such pay-off-, success-,
or prestige-biased social learning can be very individually
adaptive, provided cues are reliable, leading to
Phil. Trans. R. Soc. B (2008)
evolutionary dynamics that can be very similar to
natural selection (Boyd & Richerson 1985; Schlag
1998, 1999; Henrich & Gil-White 2001). A key
property of these strategies may be their tendency to
lead to the copying of neutral or mildly maladaptive
behaviour that was initially associated with successful
individuals (Boyd & Richerson 1985), but recombina-
tion is also a possibility (Boyd & Richerson 2002).

Figure 1c,d plots the instantaneous and evolutionary
dynamics of simple pay-off-biased learning. In figure 1c,
frequency of trait after social learning as a function of
the frequency before social learning is shown. If p is
the value on the horizontal axis, then pCpð1KpÞb
is the value on the vertical axis (derived in McElreath &
Boyd 2007, ch. 1). The parameter b determines the
strength of pay-off bias and is analogous to a selection
coefficient, in genetic evolutionary theory. We plot
bZ1/2 here. The dashed line is again the expectation
under unbiased social learning. In figure 1d, the
evolutionary dynamics produce a classic logistic growth
curve (solid curve). Pay-off-biased social learning tends
to increase the frequency of adaptive behaviour, but at
the cost of greater information demands.
(d) Integrated social learning

Many mixes of the above kinds of social learning are
possible (Laland 2004; Whiten et al. 2004). Aside from
the likely possibility that individual asymmetries—age,
sex, skill, position in social network—will make some
strategies more common among some individuals,
strategies can be hierarchically ranked within each
individual. Mixes of strategies produce their own

http://rstb.royalsocietypublishing.org/


Table 1. Probabilities of acquiring optimal behaviour via
social learning, for the three nonlinear strategies positive
frequency dependence (C), pay-off bias (S) and pay-off
conformity (SC). The sample column gives all possible
samples of three adults. Uppercase letters indicate that the
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evolutionary trajectories, as well (Henrich 2001). The
dashed curve in figure 1d is the dynamics of a mix
of pay-off bias and positive frequency dependence.
For different mixes of these and other strategies,
different evolutionary dynamics are expected.
individual sampled received a large (B) pay-off from their
behaviour whereas lowercase indicates the opposite. A or a
indicates optimal behaviour and B or b indicates non-optimal
behaviour. By multiplying each probability of a specific
sample occurring by chance in a particular strategy column,
one can sum these products to compute an expected
probability of acquiring optimal behaviour via a given
strategy. In the Pr(sample) column, q is the frequency of
optimal behaviour in the entire adult population and a and b
are the probabilities of optimal and non-optimal behaviours,
respectively, returning large pay-offs.

sample Pr(sample)

Pr

(1rC)

Pr

(1rS)

Pr

(1rSC)

AAA q3$a3 1 1 1

AAa q3$3a2(1Ka) 1 1 1

Aaa q3$3a(1Ka)2 1 1 1

aaa q3$(1Ka)3 1 1 1

AAB 3q2(1Kq)$a2b 1 2/3 1

AAb 3q2(1Kq)$a2(1Kb) 1 1 1

AaB 3q2(1Kq)$2a(1Ka)b 1 0 0

Aab 3q2(1Kq)$2a(1Ka)

(1Kb)

1 1 1

aaB 3q2(1Kq)$(1Ka)2b 1 0 0

aab 3q2(1Kq)$(1Ka)2

(1Kb)

1 2/3 1

ABB 3q2(1Kq)2$ab2 0 1/3 0

ABb 3qð1KqÞ2$a2bð1KbÞ 0 1 1

Abb 3qð1KqÞ2$að1KbÞ2 0 1 1

abb 3q(1Kq)2$(1Ka)(1Kb)2 0 1/3 0

aBb 3qð1KqÞ2$ð1KaÞ2bð1KbÞ 0 0 0

aBB 3qð1KqÞ2$ð1KaÞb2 0 0 0

BBB ð1KqÞ3$b3 0 0 0

BBb ð1KqÞ3$3b2ð1KbÞ 0 0 0

Bbb ð1KqÞ3$3bð1KbÞ2 0 0 0

bbb ð1KqÞ3$ð1KbÞ3 0 0 0
(e) Modelling integrated pay-off-biased and

frequency-dependent social learning

While there has been modelling effort devoted to
studying linear, unbiased social learning, frequency-
dependent social learning and pay-off-biased social
learning, to our knowledge no theoretical study has
simultaneously examined these options in the same
context. Therefore, we finish this section by presenting
an extension of existing evolutionary theory that
includes frequency-dependent bias, pay-off bias and
a hierarchical integration of the two. We construct
recursions for the dynamics of genes controlling these
different learning strategies, as well as for the frequency
of adaptive learned behaviour. We then analyse this
gene-culture system in order to understand what
environments favour different strategies.

Consider a large population living in a uniform but
temporally varying environment. Each individual faces
a choice of two discrete behaviours. One of these
choices yields a fitness benefit B, a proportion a of the
time, yielding an average of aB. The other yields an
average bB!aB. For each generation, there is a chance
u that the better behaviour switches to the other option.
These changes cannot be observed by individuals.

Behaviour is acquired via learning, either individu-
ally or socially. Individual learning (I) pays an average
learning cost in order to determine which option is
better. This makes the fitness of an individual learner:

W ðIÞZw0 CaBKc;

where w0 is baseline fitness from other behaviour and c
is the average cost of learning.

Social learning can be unbiased (linear, L),
frequency dependent (conformist, C), pay-off biased
(S) or pay-off conformity (SC). Linear social learning
copies a random adult from the previous generation,
resulting in average fitness:

W ðLÞZw0 CaBqCbBð1KqÞ

Zw0 CBðaqCbð1KqÞÞ:

The frequency of currently optimal behaviour, q, has
its own dynamics, which we define below. The
important point here is that linear social learning
does not transform this proportion in any direct way.
On average, it replicates the frequency of optimal
behaviour across generations.

Positive frequency dependence, conformity (C),
does however transform q. We assume perhaps the
simplest conformity heuristic. The learner samples
three random adults from the previous generation and
then adopts the most common behaviour among these
three models. Since the chance that any one model has
optimal behaviour is q, the binomial distribution
(table 1) allows us to compute the probability of any
combination and therefore the probability of the
Phil. Trans. R. Soc. B (2008)
conformist learner acquiring optimal behaviour is

qC Z qCqð1KqÞð2qK1Þ:

Using this expression gives us a mean fitness for C,

W ðCÞZw0 CBðaqC Cbð1K qCÞÞ:

Pay-off-biased social learning (S) samples three
individuals and adopts the behaviour with the highest
average observed pay-off. We compute the expected
probability of acquiring optimal behaviour through this
heuristic in the same fashion as for conformity: each of
the three models sampled has a chance q of having
optimal behaviour and each model then has a chance
either a or b of displaying a pay-off of B. Thus, the
probability of any combination of underlying behaviour
and displayed pay-offs can be computed from the
binomial distribution (table 1). This results in a chance
of acquiring optimal behaviour:

qS Z qCqð1KqÞðað2Cbð2K3bð1KqÞK4qÞÞ

Ca2ð3bK1ÞqCbðbð1KqÞK2ÞÞ:

http://rstb.royalsocietypublishing.org/
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Figure 2. Sensitivity analysis for the evolutionary model of social learning strategies in the main text. Each row plots the frequencies
of five different strategies (individual learning, unbiased social learning, positive frequency dependence, pay-off bias and pay-off
conformity) for two-dimensional combinations of parameters. Each individual plot is the frequency of a single strategy after 5000
generations of simulations at all combinations of the two parameters labelled on each axis. (a(i)–(v)) u varied from 0 to 0.5, b varied
from 0 to 0.5, while aZ0.5Cb. (b(i)–(v)) aKb varied from 0 to 0.5, b again from 0 to 0.5. (c(i)–(v)) u again varied from 0 to 0.5,
B from 2 to 10. All other parameters not on axes were fixed at B/cZ6, uZ0.1, aZ3/4, bZ1/4, w0Z2. The most powerful inference
from these simulations is that either pay-off bias (S) or pay-off conformity (SC) dominates the population, unless the environment
is very unstable and individual learning is too costly, relative to fitness benefits of optimal behaviour.
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The fitness of S is therefore,

W ðSÞZw0 CBðaqS Cbð1K qSÞÞ:

Finally, we consider the integrated strategy pay-off
conformity (SC). This strategy attempts pay-off-biased
social learning just as S, but falls back on positive
frequency dependence whenever observed pay-offs are
tied. Just as before, it is possible to compute the
expected chance of acquiring optimal behaviour
through this heuristic, by using the binomial distri-
bution (table 1). This gives us

qSC Z qCqð1KqÞð3að1Kb2Þð1KqÞ

C3a2bqKqð3bK2ÞK1Þ:

Again, this implies mean fitness:

W ðSCÞZw0 CBðaqSC Cbð1K qSCÞÞ:

The dynamics of q are governed by the proportions
of each strategy in the population. For proportions
fI; fL; fC; fS; fSC, the frequency of optimal behaviour in
the next generation in the absence of environmental
change is given by

q0 Z fI C fLqC fCqC C fSqS C fSCqSC:

Now accounting for environmental change, we arrive at
the recursion for the frequency of optimal behaviour in
the next generation:

q00 Z ð1K utÞq
0 Cutð1Kq0Þ;

where ut 2 ½0; 1� is a random variable indicating
whether the environment changed in generation t.
This random variable has chance u of being 1, as u is
the long-run rate of environmental change.
Phil. Trans. R. Soc. B (2008)
The complete evolutionary system is very difficult to

analyse, because the recursion for q is highly nonlinear.

This means there is no guarantee that q even reaches a

stationary distribution, and so the fast–slow dynamics

approach often employed in these situations (see

McElreath & Boyd 2007, ch. 6) is risky. Even if we

adopt the fast–slow approach, the implied equilibrium

of q is itself the solution to a cubic in q and very difficult

to analyse.

Therefore, we adopt a simple simulation approach

to analysing this system. We conduct simulations for

a large number of parameter combinations in order to

map out the conditions that favour different strategies.

The fitness expressions and the recursion for q allow

us to define a set of difference equations that define

the evolutionary dynamics of the system. For any

initial frequencies of the strategies and values for

w0;B; c; a; b; u, simulating this system amounts to

generating a random variable u t and recursively

computing the frequencies of each strategy after

selection. After 5000 simulated generations at each

parameter combination, we record the frequency of

each strategy. While frequencies could in principle be

highly stochastic, fluctuating as selection fluctuates, the

results show that taking the final frequency delivers

the correct inferences. It also turns out that initial

frequencies have no effect on the long-run evolution of

the system, allowing us to present simulation results for

uniform initial conditions in which all strategies had

initially equal frequency.

Figure 2 plots the frequencies of each strategy

at simulation end, for two-dimensional sensitivity

analyses. Black indicates a frequency of 1, white

indicates a frequency of 0 and grey indicates

http://rstb.royalsocietypublishing.org/
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intermediate frequencies, on a linear gradient. Baseline
parameter values in these simulations were B/cZ6,
uZ0.1, aZ3/4, bZ1/4, w0Z2. In figure 2a, the
horizontal axis takes b, the rate of good pay-offs from
the non-optimal choice, from 0 to 0.5, holding the
value of aZ0.5Cb. Thus, the degree to which
the optimal choice is better remains constant, but the
absolute level of profitability of both options increase,
as one moves left to right on the horizontal axis. The
vertical axis takes u, the rate of environmental change,
from 0 to 0.6, moving top to bottom.

When u is large, the environment changes rapidly,
and individual learning excludes the other strategies
(figure 2a(i)). When the environment is sufficiently
stable, however, either pay-off-biased social learning
(S) or pay-off-conformity social learning (SC) excludes
the other strategies. When b is small, S excludes SC.

The second row varies the difference between the
optimal and non-optimal option, aKb, from 0 to 0.5,
on the vertical axis. The difference in profitability
between the two options interacts only very weakly
with the absolute level of profitability, shown again on
the horizontal axis. At the extreme limit of aKbZ0,
learning does not pay at all, and so all strategies remain
at their initial frequencies (the grey line at the top of
the plots in figure 2b(ii)–(v)), except for individual
learning (I), which is eliminated for trying to learn
and paying a direct cost to do so.

The third row of simulations interacts environmental
uncertainty, u, with the magnitude of pay-offs, B. The
vertical axis is identical to that of the first row, but the
horizontal varies B from 2 to 10 (centred on the value
BZ6 that generated the other rows). We can see now
that, when B is sufficiently small, individual learning is
always excluded, even when the environment is highly
unstable. Pay-off-biased social learning, however,
excludes the other strategies for these parameter
combinations. Pay-off conformity only dominates, as
the environment becomes more stable. This stands to
reason, as conformity—combined with pay-off bias or
not—suffers more from changes in the environment than
does pure pay-off bias. To understand this, consider
what happens to a conformist just after a change in
the environment. Chances are, majority behaviour is
suboptimal, and therefore conformity tends to reduce
the frequency of optimal behaviour even more. Pay-off
bias, however, can still use pay-offs as a cue to optimality.

(f ) Analysis summary

The most obvious result of this analysis is to emphasize
the adaptive significance of pay-off-biased social
learning, whether combined with frequency depen-
dence or not. Provided pay-offs can be observed
with sufficient accuracy, adopting behavioural options
with higher observed average pay-offs excludes other
strategies under a wide range of conditions. Unless the
environment is extremely stochastic (in which case
individual learning dominates) or almost perfectly stable
(in which case pure conformity dominates), some kind
of pay-off-biased learning is an evolutionarily stable
strategy, in our simulations.

The integrated social learning strategy, pay-off
conformity, excludes pure pay-off bias when
the environment is not too unstable. Being partly
Phil. Trans. R. Soc. B (2008)
frequency dependent, it needs the optimal behaviour to
be the more common behaviour, at least long enough
to realize fitness gains. Otherwise, ignoring frequency
information is more adaptive. The other factor
affecting whether pay-off conformity dominates pure
pay-off bias appears to be the magnitudes of a and b,
the chances optimal and non-options behaviour yield
large pay-offs. In the simulations, when aO1/2, the
integrated pay-off-conformity strategy outperforms
pay-off bias alone, holding the difference aKb constant.
We are unsure what is causing this advantage. The
expression qSCOqS can be reduced, but it yields a
complicated expression that is difficult to interpret. It
is also not the whole story, because the average value
of q is not described by this condition, and a and b
will have large effects on this value.

An interesting feature of pay-off-biased strategies is
that they can eliminate individual learning, because any
variation among individuals in choice can be used to
discriminate good and bad options by pay-offs. All
of the nonlinear social learning strategies—positive
frequency-dependence, pay-off bias and pay-off con-
formity—can in fact do this, because their nonlinear
effects can, under the right conditions, accomplish the
same thing as individual learning.

In §3, we present an experimental design that allows
for a large number of different and integrated social
learning strategies. In light of these simulations, we
expect a heavy reliance on pay-off bias. Also, because
the environment is quite stable in the experiment
(changing every 15 periods, or a rate of 0.07), the
integrated pay-off-conformity strategy should exclude
pure pay-off bias. We do not think these exact
predictions will describe the results—even simple
experiments are much more complex than the
theory that motivates them. However, if the theory
we have presented here gets at the right economic
considerations, then the qualitative results should
show a much stronger reliance on pay-off bias than
frequency bias.
3. EXPERIMENTAL DESIGN
In order to study the diversity of social learning strategies, we

require a decision context complex enough to make both

frequency dependence and pay-off bias simultaneously

possible. Our social learning experiments create social

contexts in which groups of individuals can evolve beha-

vioural traditions, through a combination of their own

experience and the available social information. These

‘microsociety’ (Schotter & Sopher 2003; Baum et al. 2004)

experiments are highly controlled, relative to field studies of

social learning, and as a result, we know which social and

individual information each participant examines at each

time step. Unlike most experiments, however, our experi-

mental groups generate all social information endogenously,

without any experimenter deception. This both allows us to

examine the emergent properties of social learning and

develop statistical methods that can address less controlled

natural sources of data.

The experiment allows participants to access both the

frequencies of different choices and associated pay-offs,

within their own social groups. Over a series of rounds, they

may or may not use this information to learn, and we use the

complete time series of decisions and records of which
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participants access which information in order to test the

different models of social learning, pay-off biased or

frequency biased.

We have used a similar social decision environment in

previous work (McElreath et al. 2005), and the environment

itself is a social-learning extension of familiar multi-arm

bandits used in diverse fields to study individual learning. By

using a well-studied decision environment, we can begin with

good candidate individual learning models and study the

effects of adding different kinds of social information. Our

previous experimental studies have omitted pay-off infor-

mation, and so we could not consider pay-off-biased

strategies. And while we have used the statistical approach

in our previous papers, we have not previously emphasized

the methodological value of the statistics themselves, for

analysing data collected in ‘wild’ contexts.
(a) Participants

One hundred and sixty-three participants, students at the

University of California at Davis, interacted with one another

via a computer network. We recruited participants through an

advertisement in the campus newspaper. Participants

received between $5 and $20 for their participation, based

upon their performance. We used no deception in this

experiment. Participants read a complete set of instructions

and successfully completed a set of test questions about their

knowledge of the experiment, before beginning.
(b) Group structure

Participants were sorted into random, anonymous groups

of four to seven individuals, in sessions of between 8 and

20 participants. Each session was a single experiment on a

single date. While participants in the same session made

choices in the same room, these participants did not know

which of the other participants they were sorted into a group

with. Groups were constrained to be always greater than

three individuals, in order for frequency bias to be effective,

as three neighbours are the required minimum for positive

frequency dependence. Depending upon the total number of

participants showing up for a given session, group sizes were

arranged to create as many groups of four as possible. All

remaining participants in that session were placed in a single

larger group.
(c) Decision

Over a series of 60 periods, ‘seasons’, each participant made a

series of 60 crop choice decisions. These 60 periods were

divided into four ‘farms’ of 15 periods each. These farms

served to signal to participants that conditions might have

changed. On any given farm, one of two crops, ‘wheat’ or

‘potatoes’, had a higher average yield than the other. Across

farms, which crop was optimal was determined at random.

Thus in each period, each participant chose a single crop

to plant and receive a yield from. Yields were summed across

all periods, and participants received cash payment so that

they earned between $5 and $20, depending upon per-

formance. The vast majority of participants earned between

$15 and $18.

The number of farms and periods in each finesses the

trade-offs of (i) having only limited time to keep participants

before they grow bored and unmotivated and (ii) desiring the

most varied data on learning. Thus the total number of

periods, 4!15, is set by the time constraint. The number of

periods per farm is set to maximize information about

learning dynamics. If we had a single farm of 60 periods,

most of the later periods would add little to nothing to the
Phil. Trans. R. Soc. B (2008)
analysis, because all participants would be sure of the best

option by then, as we have learned from previous experiments

(McElreath et al. 2005). If a farm is too short, however, we

never witness the full dynamics of any learning process.

Therefore, guided by pilot experiments and our simulation

studies, we decided on 15 periods per farm, as this is the

approximate value that maximized our ability to correctly

distinguish simulated strategies.

(d) Social information

On the first period of each farm, no social information was

available. However, on each period after the first, participants

could access social information from the most recent period.

Participants could examine their own most recent crop

choices and resulting yields. Each participant could also

examine the most recent crop choices and yields of each

member of their own group. This information was displayed

on screen in boxes labelled by the type of information. When

a participant moused over a box, the information in it was

displayed. The experiment software tracked millisecond

access to this information, resulting in a time series of

information access. This kind of ‘mouse-tracking’ experiment

has been used to great effect in judgement and decision-

making research (Payne et al. 1993). The order of the rows,

yield and crop was randomized for each participant, each

period, and the order of neighbours was also randomized.

The order of the crop choices at the bottom was also

randomized within each participant and period.

(e) Pay-offs

Both crops generated pay-offs from normal distributions with

the samevariance, while the better crophad a meanpay-off of13

units and the worse 10 units (set from previous experience and

simulation study). Participants knew that one crop had a

constant higher mean than the other, but had no prior

information that would allow them to determine which of the

two was better.

The variance of yields was constant within farms but could

be either 1/2 or 4, determined randomly but in a way to

ensure two farms with a variance of 1/2 and two farms with a

variance of 4. The different variances comprise a learning

difficulty treatment that we have used in previous experiments

(McElreath et al. 2005).

(f ) Simulating the experiment

While there is not space here to describe our simulation

in detail, we used the statistical models we will present

later to produce simulated experimental play, under a

variety of group sizes and other experiment parameters.

These simulations simply use the probability models to

produce stochastic learning and choice. We then run

the data produced through the exact statistical analysis

we use on the real data. These simulations allowed us to

(i) choose good experimental design parameters and

(ii) verify that our statistical analysis works (i.e. recovers

true simulated strategies).
4. RESULTS
Like our previous experiments (McElreath et al. 2005;
Efferson et al. 2007), participants learn the optimal
crop for each farm, over time. Figure 3 shows
the proportion of participants making optimal choices,
as a function of period within each farm. The rate
of improvement is much faster than in previous
experiments, which omitted pay-off information for
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Figure 3. (a) Proportion of optimal crop decisions, by round within farm. Vertical lines show 95% profile-likelihood confidence
intervals. (b) Proportion of neighbours’ crop decisions (circles) and yields (curve) inspected, by round within farm.
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neighbours (McElreath et al. 2005). The increase
between periods 2 and 15 is much smaller than the
increase between periods 1 and 2.

Perhaps as a result of the marginal gains in
optimality declining after the second period, rates of
inspecting the choices (which crop was planted) and
yields (how much profit was made last period) of
neighbours decline from the second period onward
(figure 3). The average rate never falls below a
majority of neighbours, however. Note that rates of
inspecting yields slightly exceed those for inspecting
crop choices. This implies that some participants were
using something similar to an elimination by aspects
strategy, in which one important cue is used to first
narrow down the number of cases one will consider
(see Payne et al. 1993). In this case, some participants
may have first eliminated neighbours to examine crop
choices from, by first scanning the yields from the
previous period. This would result in the kind of
pattern seen in figure 3b. Our statistical analyses in §5
use only the yields and crops actually inspected by
each participant, and so take the search strategy as a
given. We think the design of the search strategy is a
worthwhile question, however. But we doubt such
details—truly observing information search—will
often be possible in natural settings.
5. ANALYSIS
We adopt a statistical approach that allows us to (i)
directly use mathematical models of social learning
strategies as statistical models and (ii) evaluate several
plausible, non-null statistical models simultaneously.
The question is not whether social information is
used—few would expect a complete absence of social
learning in such a context—but rather how social
information is used.

(a) Strategies
We translate each hypothetical learning strategy into an
expression that yields the conditional probability of an
individual choosing any behavioural option i in any
period t, given private information and the social
information the individual accessed. Each strategy
consists of two parts. The first part is the definition of
a recursion for updating the attraction scores of all
behavioural options. The second part is a convex
Phil. Trans. R. Soc. B (2008)
combination of individual choice and the influence of
social information.

A large number of meaningfully different strategies
can be constructed by varying these two components
(Camerer & Ho 1999; Stahl 2000; Camerer 2003). As
our purpose in this paper is to illustrate the approach
in the simplest manner, we do not explore a large
strategy space, but instead restrict ourselves to those
nominated by the basic research question and existing
evolutionary literature: how do people use frequency-
dependent and pay-off-biased social learning, when
both are possible?

We examine five different models that combine
elements of frequency dependence and/or pay-off bias.
First, we define (i) individual learning, (ii) frequency-
dependent social learning, (iii) pay-off-biased social
learning. We then define hierarchical strategies that
combine pay-off-biased learning with the frequency
dependence or individual learning: (iv) hierarchical
compare means and individual learning and (v)
hierarchical compare means and frequency depen-
dence. We do not present analyses of strategies that
reverse the hierarchical order of information use,
frequency dependence and compare means, for
example. These strategies fit very poorly to our data,
as will become clear when we examine the fits of each
basic model, and so we omit them for simplicity
of presentation.
(i) Individual learning
We use a standard, successful reinforcement learning
model as the basis of individual updating (Camerer
2003, ch. 6). The attraction score of option i in period
tC1 is given by

Ai;tC1 Z ð1KfÞAi;t Cfpi;t ;

where f is a parameter determining the weight given to
new experience and pi,t is the pay-off observed for
option i in period t. When option i was not sampled in
period t, pi,tZ0. Since there is no reason to expect
participants to have strong priors favouring either
behavioural option, we set A1,0ZA2,0Z0.

The attraction scores are transformed into probabil-
istic choice with a ‘softmax’ choice rule, again typical
of the learning in games literature. The probability of
choosing option i in period tC1 is given by
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PrðijAt ;QÞtC1 Z
expðlAi;tÞ

expðlA1;tÞCexpðlA2;tÞ
;

where Q indicates a vector of all parameters and l is a
parameter that measures the influence of differences
between attraction scores on choice. When lZ0,
choice is random with respect to attraction scores. As
l/N, choice becomes deterministic, in favour of the
option with the higher attraction score.

(ii) Frequency-dependent social learning
To model the family of strategies that use the frequency
of behaviour among group members, we modify the
learning model above to cue choice by the frequency of
options seen. Attractions are updated as before, but
choice is given by the rule

PrðijAt ;QÞtC1 Z ð1KgÞ
expðlAi;tÞ

expðlA1;tÞCexpðlA2;tÞ

Cg
n

f
i;t

n
f
1;t Cn

f
2;t

;

where ni;t is the count of neighbours observed to have
chosen option i in period t; g measures the weight of
social information on choice; and f determines how
nonlinear frequency dependence is. When fZ1,
imitation is unbiased. When fO1, however, more
common options have exaggerated chances of being
copied, resulting in positive frequency dependence,
such as majority rule conformity. When f!1, frequency
dependence is negative, and more commonly observed
options are less likely to be copied.

Since changes in choice feedback to changes in
attraction scores, even though this strategy has the same
attraction updating recursion as individual learning,
reinforcement patterns may be quite different.

(iii) Compare means
This pay-off-biased strategy attends to neighbours’
yields and chooses the option with the highest observed
mean. It uses the choice rule

PrðijAt ;QÞtC1 Z ð1KgÞ
expðlAi;tÞ

expðlA1;tÞCexpðlA2;tÞ

Cg
�p100

i;t

�p100
1;t C �p100

2;t

;

where �pi;tZ
P

jpi; j;t=ni;t is the mean pay-off observed for
option i in period t over all group members j, including
oneself. Raising these average pay-offs to a large power
creates an approximate step function, so that one or the
other option is favoured by the social component of
choice. When one or both options are unobserved in
period t, this strategy behaves as individual learning.
We fix fZ100 in order to force the model to match our
theory, i.e. a threshold behaviour.

(iv) Hierarchical compare means/individual learning
This strategy uses the comparison of choice means and
individual updating, but in a manner different from the
pure compare means model. Using the distance
between estimated means as a cue of uncertainty, the
strategy falls back on individual learning (attraction
updating) when the means are similar. We use a
Phil. Trans. R. Soc. B (2008)
symmetrical logistic function to model the change in
reliance on pay-offs, as the distance between the
observed means increases. Let Y ðd; �p1;t ; �p2;tÞ be the
proportion of choice that is driven by individual
updating, where d is a new parameter that determines
how quickly reliance on pay-offs decreases, as the
difference in observed means increases,

Y ðd; �p1;t ; �p2;tÞZ
2

1Cexpðdð �p1;tK �p2;tÞ
2Þ
hY :

Figure 4 plots this function for two values of d. The
probability of choosing i under the hierarchical
compare means/individual strategy is

PrðijAt ;QÞtC1 Z ð1KgÞ
expðlAi;tÞ

expðlA1;tÞCexpðlA2;tÞ

Cg ð1KY Þ
�p100

i;t

�p100
1;t C �p100

2;t

 

CY
expðlAi;tÞ

expðlA1;tÞCexpðlA2;tÞ

!
:

For similar observed means, the individual learning
component will dominate the social learning term.
Otherwise, the individual will mainly attend to
differences in observed means. However, if d is a very
large number, then only a very narrow range of very
similar observed means will lead to falling back on
individual updating.
(v) Hierarchical compare means/frequency-dependent
social learning
This model is like the previous, but falls back on
frequency-dependent social learning, as the difference
in observed means increases.

PrðijAt ;QÞtC1Zð1KgÞ
expðlAi;tÞ

expðlA1;tÞCexpðlA2;tÞ

Cg ð1KY Þ
�p100

i;t

�p100
1;t C �p100

2;t
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n

f
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n
f
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(b) Fitting strategies to data

The 19 experiment sessions involving 163 participants
provided 7900 decisions, under full information
conditions that might allow us to distinguish between
frequency-dependent and pay-off-biased social
learning. We fit the above models to these decisions,
producing for each model a negative log likelihood of
observing the true data, given the assumption that the
model is true: Klog LðDjx;QÞ for a model x with set of
parameters Q, where D is the data, a vector of ‘crop’
choices. The likelihood is defined as

LðDjx;QÞZ
Y

t

PrðDj jAtK1;QÞt ;

where
Q

t indicates the product over all rows t. The
usual practice in likelihood estimation, and the practice
we follow here, is to take natural logs of each
conditional probability and then sum these to find
log LðDjx;PÞ:

Klog LðDjx;QÞZK
X

t

log PrðDj jAtK1;QÞt :

Taking logarthirms first results in greater precision,
owing to the way most computers handle floating point
values. The parameters Q are fit via maximum
likelihood, and therefore the fitting exercise also yields
information on the best estimates of flexible com-
ponents of the learning rules.

We conducted this fitting exercise, as well as the
validating simulations, in R and using the helpful
package bbmle (Bolker and based on stats4 by the
R Development Core Team 2008; R Development
Core Team 2008). All analysis code is available from
the corresponding author. We confirmed via simulation
that our analysis could recover true parameter values
and strategies, when the true strategy was among the
set of strategies considered. The validation exercise is
helpful, because not all distinct models can be
distinguished by all kinds of data (this problem has
plagued the individual learning literature, see Camerer
2003, ch. 6).
(c) Comparing models

We compare the fit of the social learning models using
Akaike information criteria (Akaike 1974; Burnham &
Anderson 2002). Unlike null hypothesis testing,
comparing models with Akaike information criteria
(AIC—called by Akaike himself simply ‘An infor-
mation criterion,’ but subsequently renamed by the
scientific community), or another information
criterion, allows a researcher to assess the relative
explanatory power of any number of different compet-
ing and plausible models, without favouring any ‘null’
model. AIC is an estimate of the information lost by
using any particular model to estimate reality.

The advantages of the information theoretic
approach over customary null hypothesis testing has
been discussed for several decades (see citations in
Cohen 1994; Anderson et al. 2000), so we will not
repeat them here. Readers should note, however, that
there will be no p values in our presentation. Like many
statisticians, we do not find much inferential value in
p-values, especially when multiple plausible models
Phil. Trans. R. Soc. B (2008)
are under consideration. AIC and related approaches
are becoming increasingly popular in the evolutionary
sciences, because they permit more nuanced questions
and are not plagued by the same sample size biases
of null hypothesis testing (Johnson & Omland 2003).
They also allow for more powerful analysis of
observational data, collected without precise experi-
mental control.

In order to compare the models, each negative log
likelihood from the fitting exercise is transformed into
an AIC:

AICx ZK2 log LðDjx;PÞC2k;

where k is the number of free parameters in model x.
We use the common sample-size-adjusted version of
the above, AICc (Burnham & Anderson 2002), and this
is what we display in our results:

AICc;x ZK2 log LðDjx;PÞC2kC
2kðkC1Þ

nKkK1
;

where n is the number of observations to be
predicted by the model. The penalty for number of
parameters is not arbitrary—it adjusts precisely for
the expected overfitting that arises whenever free
parameters are added.

AIC can be used to select a single ‘best’ model, if an
analyst desires. However, since the ‘true’ model, in all
its detail, is certainly not contained in the set of models
fit to data, it is perhaps a more productive approach to
treat it as a continuous measure of the degree to which
each model estimates ‘truth’ (Forster & Sober 1994).
AIC estimates the out-of-sample predictive accuracy of
each model, and one easy way of ranking these
estimates relative to the models in the analysis is by
using Akaike weights (Burnham & Anderson 2002).
The weight of any model x is given by

wx Z
exp K 1

2
Dx

� �
P

j exp K 1
2
Dj

� � ;
where DxZAICxKAICmin, the difference between the
AIC of model x and the smallest AIC in the set of
compared models. For the best-fitting model with the
smallest AIC, DZ0. These weights are numbers
between 0 and 1 that estimate the relative likelihoods
of each model being the best model in the set.

A useful way we have found to explain this approach
is to consider a horse race. There are many horses in
each race, and while the fastest horse will not always
win, it usually will. If the best horse loses, it should not
usually lose by much. Thus both the rank of finishes—
which horse was first, second, etc.—and the time
differences in finishes are informative. In the same way,
the true model may not always fit the data best (just as
‘significant’ p values do not always identify important
effects). But it will usually have a high Akaike weight,
even if not the highest. So, just as a photo finish tells
you that it is difficult to say, without another race,
which of two horses is faster, when two models have
very similar Akaike weights, there is uncertainty as to
which would make the best out-of-sample predictions.
When one model has an Akaike weight much larger
than the others, however, we can be confident that it is
the best of the models considered.
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Table 2. Comparison of social learning models fit to experimental data. AICc indicates the adjusted fit of each model to the entire
sequence of choices, for each subject, after accounting for model complexity (number of parameters). Models are ordered from
best fit to worst. The Akaike weights estimate the proportion of evidence in favour of each model. (Meanings of parameters:
f2 ½0; 1�, strength of attraction updating; lO0, influence of attraction differences of choice; g2 ½0;1�, weight given to social
information; dO0, decline in probability of pay-off-biased imitation, as difference in observed means increases. HCMFD,
Hierarchical compare means/frequency dependence; HCMINDIV, Hierarchical compare means/individual learning.)

parameter estimates

model AICc

Akaike
weight f l g d f

HCMFD 6519.59 z1 0.6605 0.1645 0.3365 3.210 1.953
HCMINDIV 6918.89 !0.001 0.4620 0.1917 0.1400 4.982 n.a.
compare means 6924.23 !0.001 0.4611 0.1921 0.1239 n.a. n.a.
frequency dependent 6929.34 !0.001 0.4998 0.1814 0.1349 n.a. 3.396
individual 7004.25 !0.001 0.4382 0.1866 n.a. n.a. n.a.
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Figure 5. Maximum-likelihood estimate of strength of
positive frequency dependence for the best-fitting model,
hierarchical compare means/frequency dependence. Solid
curve indicates estimated probability of copying a choice,
given its frequency in the group. Dashed line indicates same
probability under fZ1, unbiased social learning.
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Table 2 presents the AICc, Akaike weight and
parameter estimates for each model, sorted from best

to worst fitting model. The bulk of evidence favours
model 5, hierarchical compare means/frequency
dependence. While there is no doubt about hetero-
geneity among participants, the strength of this result
leaves little doubt that any of the simpler strategies
accounts for any sizeable fraction of participants. The

maximum-likelihood estimate for f, the degree of
positive or negative frequency dependence, is just
under 2, indicating mild positive frequency depen-
dence or conformity (figure 5). The maximum-
likelihood estimate of d (not shown in figure) produces

a steep fall-off in reliance on pay-off bias for a distance
above approximately 1 unit. We caution that there is
uncertainty in these estimates, but emphasize that a
model with d fixed to a large value, say 100, does not
produce a better fit, even accounting for the reduction
of one parameter.

Many readers may wonder what proportion of
variance in choice is explained by the best-fitting
model. As is usual with binomial models, there is no
true equivalent of R2, the proportion of variation
explained by the fit model. However, it is possible to

construct an analogue that compares the raw like-
lihoods of each model to a random choice model. A
random choice model just chooses randomly at
each time t. Over 7900 choices, this model will always
have a negative log likelihood of K7900!logð1=2ÞZ
5475:863. This is a reasonable benchmark for the worst

any model can do, predicting the data. The negative log
likelihood of the best-fitting model is 3259.792. There-
fore, an analogous calculation of the variance explained
by any model x is 1KlogðLðDjxÞÞ=logðLðDjrandomÞÞ. In
our case, 1K3259.792/5475.863Z0.4047. For the

second-best model, 1K3459.442/5475.863Z0.3682.
These measures do not account for model complexity,
but they do provide a rough guide to additional raw
variance explained by the best model. We caution,
however, that substantial components of choice may
be truly random, and therefore any behavioural model

will fail to achieve a negative log likelihood of zero.
In cases in which measurement error is possible, as in
field studies or data coded from video, measurement
error will also make it impossible for even the true
model to achieve a negative log likelihood near zero.
Phil. Trans. R. Soc. B (2008)
6. DISCUSSION
We have analysed an interdependent time series of

profit-oriented choice behaviour in humans. Our
experiment did not precisely control the social

information available to each participant. Instead, we

allowed all social information to arise endogenously,

through the actual behaviour and information seeking
of participants. While one major tradition in laboratory

experiments frowns upon such a design, we consider it

an asset, for two reasons.
First, if the study of social learning is ever to link

the psychological to the population level, statistical

techniques that can accommodate observational and

noisy data are needed. The model comparison
approach we adopt in this paper is general to any set

of strategies a researcher might imagine. Caution is

needed to ensure that the kind of data available can

discriminate among the possible models. But provided
the different models are identifiable in this way, the

likelihood-based information criteria can quantify the

relative explanatory power of different hypotheses.

These dynamic models can then be reasonably asked
to produce out-of-system predictions that provide
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another avenue of disconfirmation. By contrast, effect

sizes from ANOVA cannot reasonably be expected to
predict out-of-experiment effects, because no genuine

model of learning is present.
Second, the emergent population-level conse-

quences of social learning can only be studied where
the experimenter allows them to occur—in settings in

which social information itself is not controlled
experimentally. This advantage is twofold. Being

able to study population-level effects, such as the
emergence of traditions or rates of diffusion, is

important. But in a cultural species, such as humans
and possibly other species, social learning strategies

themselves are probably adapted to a cultural

environment (Henrich & McElreath 2007). Thus, it
will eventually be difficult to study the functional

design of strategic social learning without appreciating
the cultural environment it is adapted to. This will

be true even (especially) if learning strategies them-
selves are culturally transmitted, because the popu-

lation will exert downward causation on individuals’
learning strategies.

The major scientific finding of our analysis of the
experiment is that our human participants relied

heavily on pay-off-biased social learning, as predicted
by the evolutionary model. We think predictions

generated by an economic, rather than evolutionary
model, would make similar predictions, provided social

information was endogenous to the model. When there
is no additional cost to access pay-offs and the

information is subject to no error, as in this experiment,
then it is no surprise perhaps that a successful strategy

will attend to pay-offs. What might be more counter-
intuitive is the hierarchical combination of pay-off

and frequency biases. The evidence strongly suggests

that our participants used a strategy akin to: (i) Are the
two choices’ pay-offs similar on average? (ii) If yes,

which is more common? (iii) If no, which has the higher
average pay-off?

It also worth noting that participants did not require
any training time to learn to attend strongly to pay-

offs—they did so from the first period when social
information was present. We make no strong claims

about the source of these strategies. Social learning
strategies may of course themselves be learned socially,

and we have wondered about the effects of this in
previous experiments (McElreath et al. 2005). Indeed,

there is likely hidden strategic variation among
participants. Our analysis approach, fitting a single

model at a time to the entire set of data, is a common
approach, because rarely do we have enough data on

each participant to reliably distinguish differences in
strategy. However, in principle, the statistical methods

here do not require one to conduct the analysis this

way. Each participant can be analysed separately, or a
series of fixed effects parameters can be used to

statistically model individual differences. In the analysis
here, the overwhelming support of the best model

implies little strategic variation that could be detected
by the considered models. However, we do not think

this means all participants used the same strategy,
merely that we have not modelled the kind of

differences that exist.
Phil. Trans. R. Soc. B (2008)
A common reaction, both by ourselves and our

colleagues, to experiments with students is to be
sceptical of the generality of the results. True,

university students are a special population that is

likely not typical of the human species. However, no
single population will likely be representative of the

human species. That is, every culture and subculture
may be a special case. We think there are serious limits

to how much we can generalize from experiments with
students. But we also think that being able to explain

learning in any case is an advance. Just as studying the

evolution of beetle larva in the laboratory does not tell
us exactly how evolution works in any other species (or

even in wild beetles), the clarity of the results does
generate insights than can transfer across cases. Our

feeling is that no one should conclude the human

species is just like university students, anymore than
one should conclude all insects have the evolutionary

dynamics of flour beetles. But nor should one ignore
flour beetles, as if their evolution is not worth

explaining. University students are real people with
real learning strategies, and being able to model this

learning is worthwhile.

It is always possible that another, unconsidered,
strategy is a better description of the social learning

process. The same weakness is common to all analytical
approaches, however, and we caution readers not to

consider this a flaw special to the information criterion

and model comparison approach. But despite the
strong weight of evidence for this strategy here, we

think there is no substitute for replication and the
variation of experimental design in order to test the

robustness of a result. Both our experiments and
theoretical analysis are special, like all experiments

and models. Whatever the source of social learning

strategies—cultural or genetic or (likely) both—the
strategies we find in our experiments certainly did not

evolve in the laboratory. And however useful simple
evolutionary models are for exploring the logic of

population dynamics, they cannot and do not attempt

to replicate reality. We have emphasized the generality
of the statistical approach, as it is not tied to any

particular experiment or set of predictions, but it is
worth noting key assumptions of both the experiments

and models.
First, the experimental environment we have used

provides highly accurate (noise free) pay-off infor-

mation, whereas real social environments certainly do
not. In addition, real social environments may provide

cues of success, but these cues will often be integrations
of the contributions of many separate behaviours. For

example, if someone in your town is healthy, is it a

result of her diet, her religion or her close bonds with
kin? This integrated nature of cues of success means

that people may copy many traits from successful or
prestigious individuals, with potentially important

effects on cultural dynamics (Boyd & Richerson

1985; Henrich & Gil-White 2001). Relevant to our
experimental results and the prediction of the model

that pay-off bias would dominate, it may be that the
clear advantage of pay-off bias depends upon the ability

to know that any cue of success arises from a particular
behaviour. If not, other forms of social learning may be
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more competitive. Some of our ongoing experiments
explore this consideration.

Second, our evolutionary analysis is built upon a
number of existing models of the evolution of social
learning (Boyd & Richerson 1988, 1995, 1996; Rogers
1988; McElreath & Strimling 2008). By doing so, it is
comparable to these models, but also considers a fairly
special life history. In all of these models, generations
are barely overlapping: adults survive only long enough
to be imitated. Grandparents never survive to be
imitated. There is no population structure, including
within the biological family, and therefore any effects of
gene-culture covariation are ignored (see however
McElreath & Strimling 2008). While this kind of
model provides perhaps the purest evaluation of the
logic and economics of social learning strategies, actual
strategies may have evolved (culturally or genetically)
under rather special conditions or in order to exploit
overlapping generations. If so, the inferences derived
from these models will be misleading. How they will be
misleading is hard to say, until more social learning
theory exploring population structure and overlapping
generations appears.

This lacuna of theory aside, the existing evolutionary
literature is sufficient to motivate the search for positive
frequency dependence and kinds of pay-off bias in
other apes, if not crows, whales and rats. In the search
for the psychological differences that make human
cultural evolution qualitatively different from that of
other animals, the existence of frequency-dependent
and refined pay-off bias is often ignored. For example,
experiments in which apes see three ape demonstrators
access food through a two-action problem, with two
demonstrators performing one action and the third
another, will produce data that can estimate the
magnitude of positive frequency dependence.

This research was funded by the National Science
Foundation.
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