M. Holyoak, M.A. Leibold & R.D. Holt: *Metacommunities: Spatial Dynamics and Ecological Communities*; The University of Chicago Press, Chicago, 2005, 513 pp. Price USD 38.95, GBP 24.95, ISBN 0-226-35064-9. – In this book the editors have mixed a good combination of theory and real data on metacommunity ecology, resulting in a useful synthesis of up-to-date knowledge on relationships between dynamic community ecology and spatial patterns at various scales. The structure of the book makes the studied topic accessible for many readers; the opening of the book is devoted to introducing the metacommunity concept, what is behind it and how it can be handled. Then editors go directly to the core; the two next chapters are devoted to spatial and food web dynamics. The following parts of book deal with empirical and theoretical perspectives in metacommunities. Examples in the first part cover various habitats and species systems and help us understand what the whole book is about and which questions we can ask. The part on theoretical perspectives gives according to its name the background on the metacommunity models. The authors focus on coexistence, assembly dynamics and the role of scale in understanding patterns of dynamics. The book is closed by chapters that indicate the future of metacommunity ecology as a tool for understanding the biological diversity and processes that are behind it. This book opens the door and shows that we can deal with complex systems covering several species at various trophic levels and with the spatial component. This book can be recommended to wide groups of researchers and ecologists as it opens new way of thinking about species interactions on the large scale. (JPe)

M.J. Ingrouille & B. Eddie: *Plants. Diversity and Evolution*; Cambridge University Press, Cambridge, 2006, 440 pp. Price GBP 29.99, USD 55.95, ISBN 0-521-79433-1. – This is a great and excellent textbook for students of plant sciences. It brings forth a nicely written and fresh view on the secret life of plants. Many textbooks on botany exist, but most take plants as objects or material; this book takes them as inspiration. Currently people are pushed to be narrowly specialized, and hence the multidisciplinary overview with philosophical and historical background is often underestimated. The book describes the evolutionary patterns of life/plant emergence, the development and richness of structures and architecture plans of plants. A separate chapter is devoted to reproduction, covering sex, dispersal and the world of flowers. After discussing the sources of variation the reader is ready to get into the plant diversity itself. The following chapter describes the diversity of species and the next one is devoted to diversity of plant assemblages, communities and habitat types with respect to plant forms. Because plants have accompanied humans for ages and are an essential component of our life, the authors have dedicated whole chapter to the description of coexistence of plants and people. The text describes aspects of plants used for food, industry, and what gives the spice to the chapter, plants used for feel of making the world better (plants used for spices, herbs, drugs, beverages, perfumes and ornamental plants used in gardening). The closing chapter goes into the history and presence of plant studies and highlights the milestones in changes in the perception of plants. I really enjoyed reading this book and can recommend it not only to graduate students, who are the main target group, but also to a wide audience of plant researchers. (JPe)

R.V. Solé & J. Bascompte: *Self-Organization in Complex Ecosystems*; Princeton University Press, Princeton, 2005, 373 pp. Price GBP 29.95, ISBN 0-691-07040-7. – The book brings a comprehensive view on processes within ecosystems from a theoretical view of physics. The authors showed that joining physics and ecosystem processes, which may seem strange at first sight, is reasonable and can give ecologists some extra value. In the book ecosystem processes are studied from several perspectives at various spatio-temporal scales using tools of statistical physics. Using examples the authors introduce the theoretical approach in case studies of population dynamics, species interactions, competition and spatial patterns. Within the tasks of spatial structures they deal with species distributions, creating range boundaries and dispersal. The spatial scale is further developed in chapters devoted to population stability and complex species interactions. The last big topic covered in the book is macroevolutionary perspective of species diversification and evolution. Although the book’s topic is too theoretical, the authors have done a good job in introducing the theory to a wider audience. Plenty of examples based on real data help the reader to understand the principles and the suitability of the approaches used. It is clear that this book is not for all, but it has its value for theoretical biologists as well as for those on the other side of the river, mathematicians and physicists. (JPe)