EEB 324: Theoretical Ecology (TA: Marissa Baskett)
Useful Matlab commands

Basics	
$\begin{array}{r} \text { help functionNar } \\ +-* / \\ .^{*} \cdot / \\ \mathrm{x}= \\ \mathrm{x}= \\ \sin (\mathrm{x}), \cos (\mathrm{x}), \tan \\ \exp (\mathrm{x}), \underset{\log (\mathrm{x}), \log 10}{\operatorname{abs}(\mathrm{x}), \operatorname{sqrt}}(\end{array}$	Get quick help on function functionName; you can also use the Help menu Simple addition, subtraction, multiplication, division, and power Element-by-element multiplication, division, and power for vectors and matrices (e.g., $[1,2] . *[3,4]=[3,8]$) Assign the value 4 to x Assign 4 to x without reporting back sine, cosine, and tangent exponential, natural log, base-10 log Absolute value, square root
Vectors	
$\begin{array}{r} \mathrm{v}=1: 1 \\ \mathrm{v}=1: 0.5: 1 \\ \mathrm{v}=[1,3,8 \\ \mathrm{v}(3 \\ \mathrm{v}(\mathrm{end} \\ \operatorname{length}(\mathrm{v} \\ \operatorname{sum}(\mathrm{v} \end{array}$	A vector from 1 to 10 in increments of 1 A vector from 1 to 10 in increments of 0.5 A vector with values $1,3,8$ Third element of vector v Last entry in vector v Length of vector v Sum of all entries in vector v
Matrices	
$\begin{array}{r} \mathrm{M}=[12 ; 34 \\ \mathrm{M}(1,: \\ \operatorname{size}(\mathrm{M} \\ \text { zeros }(2,3), \text { ones }(2,3 \\ \operatorname{eye}(3 \\ \operatorname{sum}(\mathrm{M} \\ \operatorname{det}(\mathrm{M} \\ \operatorname{trace}(\mathrm{M} \\ \mathrm{M} \\ \text { evals }=\underset{\operatorname{eig}(M)}{\mathrm{ein}}(\mathrm{M}) \\ {[\text { evecs, evals] }=\underset{\operatorname{eig}(M)}{ }} \end{array}$	Create the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ The first row of M Size of the matrix M Create a 2×3 matrix of zeros or ones 3 by 3 identity matrix (ones on diagonal, zeros everywhere else) Sum of each column in matrix M ; $\operatorname{sum}(M, \mathcal{Q})$ gives sum across rows Determinant of matrix M Trace of matrix M Transpose of matrix M Eigenvalues of M Eigenvalues and eigenvectors of M Multiplication of matrix M and vector v

Random numbers	
$\begin{array}{r} \operatorname{rand}(\mathrm{m} \\ \operatorname{randn}(\mathrm{m} \end{array}$	m by n matrix of $\operatorname{Uniform}(0,1)$ random entries m by n matrix of $\operatorname{Normal}(0,1)$ random entries
Plotting	
$\left.\begin{array}{r}\begin{array}{r}\text { figu } \\ \text { hold } \\ \text { plot }(\mathrm{x}, \mathrm{y})\end{array} \\ \text { xlabel(' } \mathrm{x} \text { '), ylabel('y'), title('Figure } \\ \text { subplot(rows, cols, nu }\end{array}\right)$	Start a new figure Put multiple plot commands on the same plot Plot x vs. y Label plot Work in subplot \#num in a figure with rows by cols subplots Plot a bar graph of vector v Save the current figure to a pdf file (best for opening and printing out a graph by itself) Save the current figure to a jepg file (best for inserting a graph into a MSWord file)
Loops	
$\begin{array}{r} >\ll=>=== \\ \text { if }(\text { test }) \text { action; end } \\ \text { if(test }) \text { action 1; else action 2; end } \\ \text { if(test 1) action 1; elseif(test 2) action 2; end } \\ \text { for(i=1:10) action; end } \\ \text { while(condition) action; end } \end{array}$	Comparisons: less than, greater than, less than or equal to, greater than or equal to, equal to, and not equal to Logical operators: and, or, not If test (e.g., $\mathrm{x}<0$) is true, do action (e.g., $\mathrm{x}=$ -x) If test is true, do action 1, and if not, do action 2 If test 1 is true, do action 1 , or if test 2 is true, do action 2 For i equals $1,2,3, \ldots, 10$, do action While condition (for example, $\mathrm{x}>=0$ \& $\mathrm{x}<=10$) is true, do action
Scripts and functions	
$\begin{array}{r} \text { function [output] = myfun(input) } \\ \% \text { This function is for .. } \\ \text { global } \\ \text { clear } \\ \text { fprintf('Some words here' } \end{array}$	create a function (saved in the file myfun.m) that takes input and gives output Comments in function and script files: any text after the $\%$ is ignored by Matlab Make x a global variable, so that a value assigned to x outside a function will be recognized in that function Clear the value for the variable x ; writing clear clears values for all variables Write Some words here in the command window
Oridinary differential equations	
$[\mathrm{vt}, \mathrm{vx}]=$ ode45(@myodefun, [t0 tf], x0) where function $\mathrm{dxdt}=\operatorname{myodefun}(\mathrm{t}, \mathrm{x})$ dxdt $=\ldots$	Numerically integrate myodefun, starting at x0, from time t0 to tf; this gives vector of values vx at the times in vector vt

Input/Output	
For input and output within Matlab	
save('fileName.mat','x','y' load('fileName.mat')	Save x and y in a file called fileName.mat (Matlab format) Upload the variables in fileName.mat (Matlab format)
For input and output between Matlab and spreadsheet programs (e.g., Excel)	
$\mathrm{A}=\mathrm{dlm} r e a d(\text { 'fileName', '\t }$ dlmwrite('fileName', A, '\}	Read the contents of fileName, where columns are separated by tabs (the delimiter can be anything, like ',' for commas, etc.), with the option of specifying the range as a third argument in the form of [firstRow firstCol lastRow lastCol], where counting starts with zero Save the matrix A in a file called fileName, with columns separated by tabs
For output to the command window	
fprintf('some text') fprintf('some text $\backslash \mathbf{n}$ more text' fprintf('Time $=\mathbf{\%} \mathbf{f}^{\prime}, \mathrm{t}$	Write some text in the command window Write some text, then more text on a new line Write Time $=4$ (or whatever number t is)
For input from and output to text files	
$\text { fid }=\text { fopen('fileName.txt', }$	Open existent fileName.txt to read its contents and save the file's identifier as fid
$\mathrm{A}=\mathrm{fscanf}\left(\mathrm{fid}, ' \% \mathrm{f} \% \mathrm{f}^{\prime},[2 \mathrm{in}\right.$	Take a file, identified by fid, with contents in the form of: $0.1 \quad 0.2$ $\begin{array}{ll}0.2 & 0.4\end{array}$ $0.3 \quad 0.6$ etc. and store the contents in a 2-row matrix A
$\text { fid }=\text { fopen('fileName.txt', ' }$	Open new or existent fileName.txt to append to its contents and save the file's identifier as fid
fid $=$ fopen('fileName.txt', 'w') fprintf(fid, 'some text') fclose(fid)	Open new or existent fileName.txt to write to it, erasing any current information, and save the file's identifier as fid Write some text in the file identified by fid; see above for more options Close the file identified by fid
Use the Help Menu for more options and examples	

