
Algebra and calculus review for theoretical ecology
ESP 121, Instructor: Marissa Baskett

Algebra

The building blocks for solving for x, showing the intermediate step that applies the same action
to both sides of each equation, are:
Problem x+ a = b ax = b x/a = b xa = b

(x+ a)− a = b− a (ax)/a = b/a (x/a) · a = b · a (xa)1/a = b1/a

Solution x = b− a x = b/a x = ba x = b1/a

ln is the natural log, where if ln(a) = b then a = eb (and ln(e) = 1). Helpful rules for natural log
are:

ln(ab) = ln(a) + ln(b)
ln(ab) = b ln(a)

ln(1/a) = ln(a−1) = − ln(a).

Therefore, when needing to rearrange equations with ln or e,
Problem ln(x) = b ex = b

eln(x) = eb ln(ex) = ln(b)
Solution x = eb x = ln(b)

Useful rules for dealing with powers are

xaxb = xa+b x−1 =
1
x

(xa)b = xab x0 = 1.

Note that given e0 = 1, ln(1) = 0.
Putting these building blocks together:

• Focus on what you are trying to solve for – in the examples here, x

• If you have fractions, it is typically a good idea to get everything under a common denomi-
nator, e.g.,

a

b
+
c

d
=
a

b
· d
d

+
c

d
· b
b

=
ad+ cb

bd
such that you can then multiply both sides of your equation by that denominator to get rid
of the fractions. Remember that

a+ b

c
=
a

c
+
b

c
but

a

b+ c
6= a

b
+
a

c
.

• If if what you are solving for has the same power everywhere (e.g., all x’s with no x2’s, x3’s,
etc.), then first get everything with x on one side and everything else on the other, and second
isolate x, using the building blocks above. Here are three examples:

ax+ b = c ax+ b = cx ax+ b = cx+ d
ax = c− b b = cx− ax ax+ b− cx = d
x = (c− b)/a b = (c− a)x ax− cx = d− b

x = b/(c− a) (a− c)x = d− b
x = (d− b)/(a− c)
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• When you have multiple powers, look for things to factor. If you have an expression that
= 0 and something is factorable that you can assume is nonzero (e.g., a parameter, such as
population growth rate, that has to be positive), then divide it out. If something is factorable
that you cannot assume is nonzero (e.g., a state variable, such as population size, that can
be zero or positive), then split the factors and set each to zero separately as two possible so-
lutions: if f(x)g(x) = 0, then both f(x) = 0 and g(x) = 0 are possible solutions. For example:

ax2 − x = 0
x(ax− 1) = 0

x = 0 or ax− 1 = 0
x = 1/a

In particular, if you have an expression xf(x) = 0 (often the case when solving a continuous-
time model for the equilibrium) or xf(x) = x (often the case when solving a discrete-time
model for the equilibrium), when you divide by x to simplify, x = 0 is a possible alternative
solution. Be sure to note this unless a question specifies that you are looking for the nonzero
solution/equilibrium. Conversely, x = 0 is only a possible equilibrium if the entire expression
is multiplied by x such that you can factor it out.

• If you have a quadratic equation, ax2 + bx+ c = 0, it has two solutions,

x =
−b±

√
b2 − 4ac

2a

although it is always a good idea to check if you can factor your equation easily first before
applying this.

• When you have two equations and two unknowns, first rearrange one equation so one unknown
is in terms of the other. Then plug that expression into the other equation, solve that equation
for the one remaining unknown, and go back to your original equation to solve for the other
unknown. For example, solving for x and y:

2x− y = 0 and x+ y = 1
y = 2x → x+ 2x = 1

y = 2(1/3) 3x = 1
y = 2/3 ↖ x = 1/3
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Calculus

Definition of a derivative
f ′(x) = lim

∆x→0

f(x0 + ∆x)− f(x0)
∆x

,

the rate of change or slope of f at x.

Properties of derivatives: f ′(x) = df(x)
dx

Constant factor d
dxcf(x) = cf ′(x)

Addition d
dx(f(x) + g(x)) = f ′(x) + g′(x)

Multiplication (product rule) d
dx(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

Division (quotient rule) d
dx

(
f(x)
g(x)

)
= f ′(x)g(x)−f(x)g′(x)

(g(x))2

Subfunction (chain rule) d
dxf(g(x)) = f ′(g(x))g′(x)

Common derivatives

d

dx
c = 0

d

dx
ln(x) =

1
x

d

dx
cx = c

d

dx
ex = ex

d

dx
xn = nxn−1 d

dx
ef(x) = f ′(x)ef(x)

Properties of integrals
Constant factor

∫
cf(x)dx = c

∫
f(x)dx

Addition
∫

(f(x) + g(x))dx =
∫
f(x)dx+

∫
g(x)dx

Integration by parts
∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx

Common integrals ∫
cdx = cx

∫
1
x
dx = ln(x)∫

xndx =
xn+1

n+ 1

∫
ecxdx =

1
c
ecx

Taylor expansion

f(x+ c) = f(c) + xf ′(c) +
x2

2!
f ′′(c) +

x3

3!
f ′′′(c) + ...+

xn

n!
f (n)(c) + ...

3



Linear algebra

Note: We will cover this material in class, as a linear algebra course is not a prerequisite.
A vector is a row or column of numbers, for example

~v =
[
v1 v2

]
or ~v =

[
v1

v2

]
.

A matrix is a rectangular array of numbers, for example

M =
[
a11 a12

a21 a22

]
.

A scalar is a term not in any array, for example c.
Matrix addition and subtraction is element-by-element; matrices (or vectors) need to be the

same size to be added or subtracted to each other. For example:[
v1

v2

]
+
[
u1

u2

]
=

[
v1 + u1

v2 + u2

]
[
a11 a12

a21 a22

]
+
[
b11 b12

b21 b22

]
=

[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

]
.

When a scalar is multiplied by a matrix or vector, it is multiplied by each element, for example

c

[
v1

v2

]
=

[
cv1

cv2

]
c

[
a11 a12

a21 a22

]
=

[
ca11 ca12

ca21 ca22

]
.

Matrix multiplication happens across rows and down columns: for matrix A with elements aij

and B with elements bij , the ijth element of their product AB is
∑

k aikbkj . Therefore, the inner
dimensions of two multiplied matrices much agree (i.e., if A is a m× n matrix, then B must be a
n× p matrix, and AB has dimensions m× p), and order matters (AB 6= BA). For example:[

a11 a12

a21 a22

] [
v1

v2

]
=

[
a11v1 + a12v2

a21v1 + a22v2

]
[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
.

The identity matrix, I, has ones on the diagonal and zeros elsewhere, for example[
1 0
0 1

]
.

The identity matrix multiplied by any vector or matrix is that same vector or matrix (i.e., I~v = ~v
and IM = M).

The trace of a matrix is the sum of the elements on its diagonal, for example

Tr

[
a11 a12

a21 a22

]
= a11 + a22.
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The determinant of a matrix in the 2× 2 case is∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21.

An eigenvalue (λ) and eigenvector (~v) of a matrix are a scalar and vector such that

M~v = λ~v.

To solve for the eigenvalues and eigenvectors of a matrix, first rearrange

M~v − λ~v = 0
M~v − λI~v = 0
(M − λI)~v = 0.

This is true only if the determinant
|M − λI| = 0.

In the 2× 2 case, this is∣∣∣∣( a11 a12

a21 a22

)
− λ

(
1 0
0 1

)∣∣∣∣ = 0∣∣∣∣( a11 a12

a21 a22

)
−
(
λ 0
0 λ

)∣∣∣∣ = 0∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0

(a11 − λ)(a22 − λ)− a12a21 = 0
λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0

λ =
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

2
.

This yields two possible values for the eigenvalue λ (an n × n matrix will have n eigenvalues).
To find the corresponding eigenvector for each, return to the original definition of eigenvalues and
eigenvectors

M~v = λ~v[
a11 a12

a21 a22

] [
v1

v2

]
= λ

[
v1

v2

]
[
a11v1 + a12v2

a21v1 + a22v2

]
=

[
λv1

λv2

]
,

or

a11v1 + a12v2 = λv1

a21v1 + a22v2 = λv2.

Because of the definition of eigenvalues and eigenvectors, if any vector ~v solves M~v = λ~v, then a
constant c times that vector ~u = c~v is also an eigenvector (Mc~v = λc~v so M~u = λ~u). Therefore,
you will find the solution to be an expression of v1 relative to v2, i.e., v2 = av1, such that your

eigenvector is
[
v1

av1

]
= v1

[
1
a

]
. One approach is to set one entry to one such that the other entry

is expressed relative to it (e.g., let v1 = 1). Another approach is to set the sum to one (v1 + v2 = 1)
to normalize (e.g., when expressing a stable age distribution in terms of the proportion in each age
class).
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Equilibrium terminology

• “Equilibrium” means no change in time. In continuous time (dn
dt = f(n)), this means the

change over time is zero (f(n̄) = 0). In discrete time (Nt+1 = F (Nt)), this means that the
population size in the next time step is equivalent to that in the previous (N̄ = F (N̄)).

• “Biologically relevant” equilibrium means that the equilibrium population size non-negative
(zero or positive) and real (not imaginary).

• In a two-species case, the “zero” equilibrium has both species equal to zero, the “edge”
equilibrium means one species is equal to zero and the other is nonzero (on the edge of a
phase-plane plot of one species vs. the other), and the “internal” equilibrium means both are
nonzero (in the interior of a phase-plane plot of one species vs. the other).

• An “isocline” is a line along which one species is not changing (e.g., in a two-species case with
n1 and n2, dn1

dt = 0 without any constraint on dn2
dt ).
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