
ECL 298: Computational methods in population biology (Marissa Baskett and Sebastian Schreiber)
Programming info sheet
March 8, 2013

Rules of coding

1. Any time you write a line of code more than once, program it as a function so you only have one
place where you need to look for any corrections or changes.

2. Break your code down to individual functions that each preform an individual task so you can debug
and test piece by piece (“functional decomposition”).

3. Plan out your code beforehand, writing a phrase or sentence for each general step you plan to take
(these might be your functions), then breaking those into smaller steps, until each is something you
can turn into a line of code (“pseudocoding”); this is analogous to outlining a paper before writing
full sentences to make sure you have logical flow and all of the pieces fit together.

4. Comment while you code so it’s easier to remember what the code means when revisiting it.

5. Define parameters up front rather than using numbers within coded calculations so it’s easy to find
and change them.

6. Write your code as a script instead of at the prompt so it’s easier to edit, save what worked, and
run it again another day.

7. Specific to R (and Matlab): any time you can use vectors or matrices instead of for loops, try it ; it’s
usually much faster.

8. Debugging:

(a) Test your functions for parameters/cases where you know the answer before running it for a
more complicated case so you can make sure they work (“testing”).

(b) When you can’t figure out a bug, go line-by-line through the function, checking that you’re
getting what you expect from each command (“desk-checking”; R functions: debug, browser);
you can also comment out lines to help you isolate a bug (in R, text after a #).

(c) Especially for code where others might be using your functions, build in warning and error
messages for inappropriate values that might accidently be passed (R functions: warning,
stop; e.g., cases where zero or negative parameter values will give invalid results).

1

Commands in R

Basics
help(functionName) Get quick help on function functionName; you can also use the

Help menu
+ - * / ˆ Simple addition, subtraction, multiplication, division, and power;

element-by-element if you’re using vectors or matrices
x = 4 Assign the value 4 to x

sin(x), cos(x), tan(x) sine, cosine, and tangent
exp(x), log(x), log10(x) exponential, natural log, base-10 log

abs(x), sqrt(x) Absolute value, square root
Re(x) Real part of x

round(x), floor(x), ceiling(x) Rounded value, floor (drop everything after the decimal), or ceil-
ing (opposite of floor, round up anything with a decimal to the
next largest integer) of x

rm(x) clear the value stored in x; rm(list=ls()) clears all values

Plotting
plot(x, y, type=“l”, xlab=“X
label”, ylab=“Y label”,
col=“color”, main=“Title”)

Plot y vs. x with a line (type l, could also be p for points, b
for both, etc.) in color color (e.g., red, blue, etc.), with x-label
X label, y-label Y label, and title Title; all specifications but x
and y are optional; if you want to put parameter values into any
labeling, use the paste command

lines(x, y, ...), points(x, y, ...) Plot lines or points on an existing plot; note that you have to start
the plot with plot (can be a blank line with type=“n”) and then
use these; use the legend command to add a legend if desired

matplot(X, Y, ...) Plot the columns of matrix X against the columns of matrix Y
barplot(vals, beside=TRUE,
names.arg=labs, ...)

Bar plot of vals where bars are next to each other (beside=TRUE,
instead of stacked) with labels labs for the bars

hist(x,breaks=20, ...) Histogram plot of x with data broken in the specified number of
equally space intervals (e.g. 20)

contour(x,y,z,nlevels = 10) Contour plot with nlevels contours of the matrix z where x and y
are the locations the grid lines where the z values were computed.
To get filled contours, use filled.contour. Alternative contour
plot commands are available in the lattice package.

image(z) Color map plot based on values of z.
pdf(file=“fileName.pdf”) Create file fileName.pdf to save plot in. Use this command before

creating the plot.
dev.off() Shut down current plot. For creating pdfs, you need to shut down

the current plot before it saves the image as a pdf file.
par(mfrow=c(m,n), cex.axis=q,
...)

This command can be used to control the way things are being
formatted in plots, e.g. the mfrow option creates a layoff of m by
n subplots that get filled as further plot commands are executed,
the cex.axis magnifies the axes by a factor of q, etc.

2

Vectors
c(a, b, c) A vector with values a, b, and c (can be any number of values)

x = c(a=1, b=2, c=3) A vector with values 1, 2, and 3 labeled as a, b, and c
startVal:endVal A vector from startVal to endVal in increments of 1

rep(val, rep) A vector of value val repeated rep times
seq(startVal, endVal, by=inc) A vector from startVal to endVal in increments of inc

seq(startVal, endVal, length=nVals) A vector from startVal to endVal of length nVals
v[n] nth element of vector v

length(v) Length of vector v
sum(v) Sum of all entries in vector v (also works for matrices)

cumsum(v) Cumulative sum of vector v at each entry (e.g., if v =
(a1, a2, a3), cumsum(v)= (a1, a1 + a2, a1 + a2 + a3)

min(v), max(v) Minimum or maximum value in vector v (also works for ma-
trices)

mean(v), var(v), sd(v) Mean, variance, and (sample) standard deviation of vector v
cor(v,w) Correlation of vectors v and w

which(v==val) Which entries of v equal value val (also works for matri-
ces and can also use the other logical operators listed in the
“Loops” table)

which.max(v) Which entries of v equal the maximum value
rev(v) Reverse of vector v

as.data.frame(x) Turn object x into a data frame

Matrices
matrix(v, Nrows, Ncols) Create a matrix filled with entires v (a number, which will be put

into all entries, or a vector of values) with Nrows rows and Ncols
columns

diag(v, n) n× n matrix with v on the diagonal and zeros everywhere else
cbind(v1, v2, ...) Combine vectors (or matrices) v1, v2, ... along columns
rbind(v1, v2, ...) Combine vectors (or matrices) v1, v2, ... along rows

nrow(M), ncol(M), dim(M) Dimensions of matrix M (number of rows, number of columns, both
dimensions in a vector of [nrow, ncol])

M[m,n], M[m,], M[,n] For matrix M , entry in row m and column n, mth row, or nth column
t(M) Transpose of M

det(M) Determinant of M
ev = eigen(M) Eigenvalues (ev$values) and eigenvectors (ev$vectors) of M

M%∗%N Matrix multiplication of M and N
M%x%N Kronecker product of M and N (equivalently, kronecker(M, N))
M%o%N Outer product of M and N (equivalently, outer(M, N))

rowSums(M), colSums(M) Sum across rows or columns (sum(M) sums all entries)

3

Scripts and functions
text Comment (text is not read by R)
source(“scriptName.R”) Run scriptName.R
fnName = function(inputs) {...} Define function fnName with inputs inputs
return(x) Return value x at the end of a function
return(list(x,y)) Return multiple values at the end of a function
print(input) Display input (a variable for its value or text in quotes) to

the screen
out = optimize(fn, c(searchMin, search-
Max))

Find the minimum (out$minimum) of function fn over the
range from searchMin to searchMax

out = optim(x0, fn) Find the minimum (out$par) of function fn given initial guess
x0

debug(fn) Debug function fn: lets you step through the function so you
can examine it for debugging (hit return to go step by step, c
to continue, or Q to quit; browser and traceback are useful
debugging functions as well)

system.time(command) Returns the amount of time required to execute command.
Useful for estimating completion times for large simulations.

Loops
for(x in 1:xf) {...} For each value of x from 1 to xf preform set of commands

while(cond){...} While the conditions cond are true, preform set of commands
if(cond){...}else{...} If the conditions cond are true, preform set of commands, and if not, preform

another set of commands (following else, this part is optional); note that if
you have a series of if/else statements, switch might work better

>, <,>=, <=, == Tests for greater/less than, greater/less than or equal to, and equal to (e.g.,
x <= y returns TRUE if x is less than or equal to y and FALSE if not)

!, &, | Not, and, or (e.g., x < y & x < z returns TRUE if x is less than both y and
z and FALSE otherwise)

lapply(v, fn) Apply function fn to each element of vector v, returning a list; sapply
preforms the same operation but returns a vector (or matrix), and both of
these are options for avoiding time-consuming for loops

Numerical integration
library(deSolve) Load the library for numerical integration, must come before

using lsoda
lsoda(n0, seq(t0,tf,dt), odeFun,
parms)

Numerically integrate the function odeFun given parameters
parms starting with values n0 over time vector seq(t0,tf,dt).
Final output is a data array. To get final output to be simply
a matrix use ode instead of lsoda.

odeFun = function(t, n, parms)
{with(as.list(parms), {dn = ... re-
turn(list(dn))})}

Appropriate structure for a function for use in lsoda: order
of inputs is t, n, parms, need to extract any input parameter
values out of list parms using with(as.list(parms),{...}), and
need to return dn as a list

4

Random numbers
rnorm(num, mean=m, sd=s) num random normal variables from a distribution with mean m

and standard deviation s. To compute uniform random num-
bers use runif, Poisson distributed numbers rpoiss, exponen-
tially distributed numbers rexp, binomially distributed numbers
rbinom, etc.

dnorm(num, mean=m, sd=s) Computes the density at num for a normal distribution with
mean m and standard deviation s. To compute densities for uni-
form random numbers use dunif, Poisson distributed numbers
dpoiss, exponentially distributed numbers dexp, binomially dis-
tributed numbers dbinom, etc.

pnorm(num, mean=m, sd=s) Computes the distribution function at num for a normal distribu-
tion with mean m and standard deviation s. To compute densi-
ties for uniform random numbers use punif, Poisson distributed
numbers ppoiss, exponentially distributed numbers pexp, bino-
mially distributed numbers pbinom, etc.

set.seed(seed) Sets the “seed” of the random number generator to seed (a nat-
ural number). Allows one to get replicatable results.

sample(v, num, replace=FALSE) Sample num entries from the vector v without replacement (or
replace=TRUE for with replacement)

Data input/output
save(x, file=“data.Rdata”) Save x (can put in multiple objects, e.g., save(x,y,...)) as R

data in data.Rdata
load(“data.Rdata”) Load R data in file data.Rdata
x=scan(file=“data.txt”) Input data in data.txt file into a vector or list
A=read.table(“data.txt”) Input data in data.txt file into a data frame; apply as.matrix

to convert to a matrix
write(t(A), file=“data.txt”, ncol-
umn=dim(A)[2])

Output matrix A to data.txt file; use write.table for data
frames

Useful packages
ggplot2 Improved and (more intuitively) flexible plot formatting
deSolve ODE integration

FME Includes sensitivity analyses for continuous-time models
mnormt Multivariate normals

multicore Parallel processing
knitr Generating reports that integrate R code with text

5

