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In the production of goods from renewable resources, the boundary between working and

natural systems is diffuse. For example, agricultural production on working landscapes takes

advantage of natural services like pollination, water regulation and feedstocks. Nominally nat-

ural systems such as fisheries and forests are often artificially augmented through hatcheries

and tree planting. Natural resource managers have historically made decisions with an eye

towards the production of harvestable biomass, i.e. the total mass of crop, timber or fish

available. However, in this vein there is growing concern that an emphasis on biomass has

come at the cost of homogenizing the species on which these services depend. Timber stands

become monocultures (Kelty, 2005). Agriculture suffers genetic erosion of plant and animal

species (Millennium Ecosystem Assessment, 2005) leaving homogenized crops more suscepti-

ble to disease (e.g. Heisey et al. 1997). Hatchery and fishing practices degrade the diversity of

stocks (Allendorf et al., 2008). As a result, these systems may be poorly positioned to adapt

to a variable environment, e.g. through changes in disease dynamics, climate and availability

of food sources. Such systems are at risk of becoming dependent on man-made capital and

labor inputs. An important element of natural capital—genetic variation—has been reduced,

driving “homogeneity in global food supplies” (Khoury et al., 2014) and threatening “health,

culture and livelihoods” (UNEP, 2007).

In this paper we assess the trade-off between artificial augmentation of biomass in the short-

run and the long-run potential for resource homogenization, specifically degradation of bio-

diversity underlying a populations’ ability to adapt to shocks. Our application involves the

augmentation of wild stocks of salmon. Artificial augmentation practices in this system have

generated warnings that genetic diversity may be eroding, leading to a loss of the ‘portfolio

effect’ or buffering provided by a diverse set of individuals, and moreover, the value of this

loss is not accounted for in decision-making (Carlson and Satterthwaite, 2011). To capture

this tradeoff, we construct a bioeconomic model of the biomass or quantity of the stock as

well as its genetic diversity.

Protection of biodiversity is a cornerstone of conservation and renewable resource manage-

ment. While the economics literature has historically focused on the problem of maintaining

a diverse set of species (e.g., Weitzman, 1998) recent research also highlights the importance

of diversity within a species population (Eikeset et al., 2013; Jardine and Sanchirico, 2015;

Zimmermann and Jørgensen, 2015). Genetic differences are the foundation for such diversity,

combining with environmental variation to produce a portfolio of traits across individuals.

Brock and Xepapadeas (2003) argue that this gene pool of a species is an essential element

of natural capital. Although a bioeconomic literature on the evolutionary effects of manage-

ment has recently emerged, complexity in genetic dynamics has led to compromises in the

evaluation of efficient management strategies.

2



In this paper we implement an emerging dynamic optimization method—approximate dy-

namic programming—to solve a quantitative genetic-bioeconomic model without the limita-

tions of earlier analyses. With a few recent exceptions, the representation of genetics in the

economics literature is strongly stylized, such that the expression of a trait is determined

by a single gene (or locus) with a small set of alternative types (or alleles). This restricts

the trait of concern to be amongst a small, discrete, set of alternatives. For example, to

ensure analytical tractability, Brock and Xepapadeas (2003) allow for three pest types while

Guttormsen, Kristofersson, and Nævdal (2008) assume two discrete fish types. Just as a two-

period dynamic model is useful for simple insights but insufficient for realistically balancing

long-run tradeoffs, so too is a richer model of the genetic continuum needed for representative

results.

Continuous-trait genetic models are more flexible and realistic than discrete-trait represen-

tations. Consider human height as a canonical example. In a discrete model individuals

might be only ‘tall’ or ‘short’, while in a continuous model individuals would vary from ‘tall’

to ‘short’. Even though the average is ‘medium’ in both cases, the population distributions

are fundamentally different (and in the discrete case highly unrealistic). Furthermore, the

continuous model readily allows for the environment to realistically influence expression of

the genes (e.g. nutrition differences driving small to large shifts in observed height).

Jardine and Sanchirico (2015) use such a continuous-trait model to examine how markets

incentivize the degradation of early-returning runs of a fishery. While they provide a first

look at how economic factors can influence the portfolio of a stock complex, the behavior (and

thus genetics) of each subpopulation is assumed to be fixed—the only diversity dimension

considered is the relative biomass of each subpopulation. Eikeset et al. (2013) and Zim-

mermann and Jørgensen (2015) relax this constraint in their applications (as we do in our

analysis), capturing changes in time-varying traits via a dynamic quantitative genetic model.

Both of these analyses identify optimal management given dynamic feedbacks with genetics

underlying key traits.

Eikeset et al. and Zimmermann and Jørgensen allow for rich variation in the genetic state of

their populations. However, due to strong computational challenges, neither analysis identi-

fies the fully optimal strategy—policies are assumed to follow specific, simple functional forms

dependent on two parameters which are optimized through a combination of simulation and

brute force search. Our methodology brings the dynamic quantitative genetic-bioeconomic

problem back into a dynamic programming framework in which no assumed structure is

imposed on the policy function mapping the multi-dimensional stock complex state into

management action.
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In our application we consider the California Central Valley Chinook (CVC) salmon stock

complex. In spring 2008, state and federal fishery managers imposed an emergency closure of

Chinook salmon fishing off the coasts of California and southern Oregon due to anticipated

poor returns of fall-run CVC salmon. The closure was the first in the fishery’s 157 year

history and led to an estimated loss of $255 million (Schwarzenegger, 2008). It was argued

that at the time CVC salmon lacked the capacity to buffer against unfavorable environmental

variation in ocean conditions (affecting food availability) due to a reduction in life history

variation (Lindley et al., 2009).

Our key trait of interest—and focus of the genetic model—is migration timing, which is

critical for survival via resulting access to food. Each year, young CVC salmon migrate from

upstream spawning grounds, out to the ocean. Survival in the ocean depends on when the

young arrive relative to the variable annual nutrient upwelling near the coast, which attracts

an abundance of other species that the young must feed on to grow rapidly (Petrosky and

Schaller, 2010; Wells et al., 2012). Variation in migration timing is hypothesized to provide

“value in avoiding boom and bust dynamics”, which would occur if all subpopulations behaved

identically, all surviving or succumbing as young (Hilborn et al., 2003).

With respect to management, we focus on the decision to artificially transport juvenile hatch-

ery fish to bypass a risky segment of their life-cycle. This practice augments biomass, but with

the possible unintended consequence of degrading genetic diversity (Lindley et al., 2009). The

form of augmentation is specific to the system but captures a general tradeoff, tuning a dial

that increases current biomass at the potential cost of degrading diversity in the stock port-

folio. This belongs to a class of management actions that affect both biomass and genetic

diversity, such as in captive breeding, monocropping, and harvest driven fisheries-induced

evolution. Our results contribute to a broader understanding of efficient joint management

of biomass and biodiversity. These problems highlight the fact that ecosystem management

to achieve better short run provision of services can involve key tradeoffs with the longer

run goal of ensuing the whole system’s capacity to deliver services (Brock and Xepapadeas,

2003).

Incorporating genetic richness across two subpopulations while solving for efficient man-

agement policy presents a substantial challenge for standard numerical solution techniques

such as value function iteration. We use a recently developed stochastic simulation solution

technique that is tractable even under high dimensionality known as approximate dynamic

programming (ADP). This optimization approach first appeared in the operations research

and engineering literatures (Powell, 2007; Bertsekas, 2011). To date in economics, the ADP

method has been used to solve high-dimension versions of macroeconomic general equilibrium
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problems by Judd, Maliar, and Maliar (2011) and Hull (2015).

Our results show that the portfolio is indeed degraded by artificial augmentation—diversity

declines within and between subpopulations. Even so, the maximum feasible augmentation

is optimal in most cases. The lost portfolio effect value is typically more than compensated

for by the population boost from increased survivorship. Further, while we find that a loss

in portfolio effect increases the variation in harvest profit it does so only in the positive

direction. Despite these economic gains, if artificial production of young ever ceases, having

taken advantage of augmentation (trucking) leaves the system in a worse position to recover

than if no augmentation had been used. This arises because boosted stocks from artificial

augmentation also mask the worsening match between a population’s genetics and local

conditions. Augmentation also strongly erodes the wildness of both subpopulations. Finally,

impacts both good (additional stock) and bad (genetic erosion, loss of wildness) are most

pronounced in the subpopulation without the hatchery. The greater stock increase occurs

because the hatchery supplies immigrants (through straying) to a stream not previously

supported by hatchery fish. The greater genetic erosion impacts are expected since the

subpopulation without the hatchery is originally more genetically distinct from the hatchery-

reared fish.

Generally our results show how practices that homogenize natural systems through genetic

erosion can still generate positive net economic returns. This occurs when the direct demo-

graphic boost outweighs the impact of genetic erosion. However, the substitution of more

physical capital and labor for natural capital (1) must be maintained for gains to persist, (2)

weakens the capacity for adaptation should this capital be removed, and (3) can inadvertently

move populations far from their predominantly wild baseline.

In the next section we describe the methods, including the system dynamics, the manager’s

problem, and the solution method. In the third section we present the results: the optimal

value function, the optimal policy function, and simulations to depict how optimal policy

compares to alternative policy.

1 Methods

In this section we describe the dynamics of the system, followed by the decision problem, and

finally the ADP solution method.
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1.1 System dynamics

To describe system dynamics, we follow the biological model and parameterization of Dedrick

and Baskett (2018), except where noted. Values used for parameters are summarized in the

appendix. We model two genetically distinct subpopulations of salmon in separate streams

of the same river system. Let t represent the time period and let salmon subpopulations

be indexed by i ∈ {1, 2, 1∗} for the two streams {1,2} and for the hatchery fish {1∗} (which

are sourced from individuals in stream 1). For each subpopulation, we follow the popula-

tion size, Ni,t, and the genetic distribution for migration timing (the key evolving trait) as

described by the genetic mean, µi,t, and variance, Gi,t. The distribution of observed traits

(or phenotypes) in the population is continuous, based on the genetic distribution as well

as (fixed) environmental variance. At the individual level, this trait is the migration timing

(which can be equivalently expressed as the ocean arrival day given a fixed time to complete

the journey). This trait is central to the survivorship of this population as it affects food

availability for initial development in the ocean. Figure 1 depicts the model dynamics.1

At the beginning of the period (horizontal dashed bar) salmon exit the ocean and swim

upstream in order to reach spawning grounds in one of two tributary streams. Both streams

have wild spawning grounds. However, we assume that only stream 1 has a hatchery in order

to capture feedbacks between subpopulations with artificial reproduction and those without.

In order to produce juveniles, the hatchery takes a fixed number of spawners returning to

stream 1 (Hmax) unless the population is low, in which case only a fraction (ζ) of returners

are taken:2

(1) N1∗,t = min(ζN1,t, Hmax),

where Ni,t is the number of adult spawners in a subpopulation. The value selected for ζ and

all other parameters in the model are listed in the appendix.

We assume wild reproduction is subject to Beverton-Holt density-dependent recruitment, as

per Honea et al. (2009):

(2) N ′i,t =
(Ni,t − 1i=1N1∗,t)Ri

1 + (Ni,t − 1i=1N1∗,t)Ri/Ki
,

1CVC salmon exhibit overlapping generations with freshwater recruits typically spending two years in
the ocean before returning to spawn. However, because the number of state variables is already elevated to
capture both biomass and biodiversity, we focus on a single generation to capture tradeoffs as parsimoniously
as possible.

2This is a simplifying assumption based on expert opinion.
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Figure 1. Outline of the model dynamics
Note: Each circle indicates the population rearing environment, i ∈ {1, 2, 1∗}. Text along the
circle indicates different life history stages (with a dashed bar at the census point), inner text
indicates evolutionary and ecological dynamics, and outer text indicates management-driven
dynamics.

where N ′i,t is the number of juveniles produced, 1i=1 is an indicator variable for stream 1

(to account for hatchery removals), Ri is the fecundity of wild fish and Ki is the carrying

capacity. Reproduction in the hatchery, in contrast, is assumed to occur without density

dependence,3 such that

(3) N ′1∗,t = R1∗N1∗,t.

Each stream contains a genetically distinct subpopulation. Genetic dynamic equations are

developed in detail in the online appendix. Variation in the key trait—migration timing—

across subpopulations is expected because they adapt to local conditions and there is low

natural exchange between them.4 We assume that the genetic mean value of this trait for

juveniles is identical to that of their parents. The genetic variance for juveniles is a function

of the spawning population variance, assuming random mating of the parents and constant

genetic variance at inheritance. After maturing for a time in the stream, juveniles out-migrate

3This is based on expert opinion to mirror the fact that hatcheries choose the number of adults to take
based on capacity and so the hatchery juvenile population size is not set by density-dependence, unlike the
wild juvenile population.

4Migration timing refers to the date on which the juvenile salmon begins their migration downstream to
the ocean. This timing largely determines when the juvenile salmon will arrive to the ocean. In this paper we
assume that any difference in migration timing results in an identical difference in ocean arrival timing.
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towards the ocean. This journey involves migration mortality in the stream that is both trait-

independent (e.g. predation) and trait-dependent (i.e. selective) given optimal-timing factors

such as stream flow, temperature, etc. Both types of mortality are assumed to depend on

the distance the out-migrating juveniles must swim. Wild fish, which are never trucked, have

a maximum survivorship of κwild ∈ [0, 1] (due to trait-independent mortality). Hatchery

fish survivorship is “augmented” by bypassing some of the wild journey to the ocean (via

trucking) given by the choice variable Dt ∈ [0, 1], normalized to the unit interval.

The maximum possible in-stream survivorship of migrating juveniles is thus given by

(4) κ̃i(Dt) =

κwild if i = 1, 2

Dt + (1−Dt)κwild if i = 1∗.

When survival of hatchery fish is not augmented at all, in-stream survivorship of hatchery fish

is identical to that of wild fish (κwild). If the hatchery augments juvenile survivorship as much

as possible (Dt = 1), survivorship of hatchery fish at this stage is 100%.5 Migrating hatchery

fish thus have a maximum survivorship that is a convex combination of wild survivorship and

full survivorship as a function of augmentation distance (Dt). This migration mortality is

non-selective (trait-independent), i.e. affects all fish equally. In order for genetically distinct

subpopulations to emerge, there must also be a source of mortality that is selective.

In our model, selective migration mortality is induced by any mismatch between the indi-

vidual’s trait and the ideal trait determined by the ecology of each particular stream, i.e.

between each fish’s migration date and the optimal migration date for that stream. Each

stream has a different ideal outmigration date, due to stream-specific characteristics.6 Fur-

ther, ocean selection mortality occurs due to any mismatch between the individuals’s ocean

arrival date (which is determined by their migration date) and the stochastic ocean upwelling

date. Therefore, the full genetic distributions of both populations, as they depend on both

their means and genetic variances, determine population survival under both selective events.

Greater genetic variation within and across streams can reduce survival for optimally adapted

populations in stable environments but provides adaptive capacity to variable environmental

conditions, such as the variable upwelling timing here. Finally, there is non-selective natural

ocean mortality and harvest.

5We assume there is no mortality of hatchery fish as they are trucked. This is a simplifying assumption,
based on expert opinion and hatchery reports which state, for example, “fish looked very healthy upon arrival
and acclimated extremely well” (FFC, 2009). While some mortality is likely we could not find data, or even
estimates, as to how much mortality occurs during trucking.

6Multiple physical and biological factors can drive this difference. For example, due to differences in air
temperature, altitude, and even soil composition between streams (and their watersheds) peak snow melt
discharge can vary by weeks between streams (Peterson et al., 2005).
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After harvest the remaining adults return to the streams to procreate. Typically they head

to the same spawning grounds they were reared in by following scent paths (chemical cues)

imprinted while out-migrating (Keefer et al., 2006). Wild salmon naturally stray from their

home stream to an alternative stream at some very small proportion, σ. We assume that

hatchery salmon stray at a proportion q(Dt) that increases linearly from σ the further they

were trucked as juveniles, as per California Hatchery Scientific Review Group (2012):

(5) q(Dt) = σ + (qmax − σ)Dt.

Straying above natural levels is an unintended consequence of the management decision and

threatens to homogenize the aggregate population. See the online appendix for the population

and genetic dynamic equations in full, including how in-stream and ocean selective mortality

affect the mean genetic value of the population.

1.2 The Manager’s Problem

Given the complexity of salmon life history across fresh water and ocean environments, there

are a number of management decisions that affect their dynamics. Here we focus on the man-

ager’s choice of artificial augmentation of juvenile survival, Dt, since this choice is believed to

play a central role in both increasing biomass and the persistence (or loss) of genetic diversity

between subpopulations.7 Garnache (2015) found that the gains to improving habitat in a

salmon system (through floodplain management) were larger than those from improvements

to the fishery management regime.8 This suggests that efforts to bolster stocks to compensate

for habitat degradation are likely to be important decision variables in their own right.

Welfare in the model stems from harvest profits. To specify the harvest exploitation rule, we

start with the Pacific Fishery Management Council’s plan for Sacramento River Fall Chinook

(SRFC) as summarized by Winship et al. (2015). We make two adjustments to this rule in

our model. First, we scale the stock level to be consistent with the share of the system we are

capturing in our focus on two streams: we set the scale of our system at one quarter of the size

of the aggregate SRFC stock complex. Second, we smooth the harvest rate function. The rule

7Another potential hatchery decision variable to consider is the quantity of hatchery production. However,
since the hatcheries’ mandate is generally to produce a roughly constant quantity of juveniles per year, and
hatcheries are limited in capacity, we take this level of production as given for this analysis and focus on
augmentation (Huber and Carlson, 2015).

8This result emerges due to the high marginal benefit of additional habitat, the low opportunity cost of
habitat, and the low cost of harvest. Low harvest costs cause the maximum sustainable yield to be very similar
to the rent-maximizing total allowable catch, allowing the baseline harvest rate to be near optimum already.
The combination of circumstances means the relative gains to habitat improvement are much larger than the
gains from harvest policy improvement.
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specified in Winship et al. (2015) is based on a constant escapement approach but includes

modifications that introduce several discontinuities. To avoid potentially erratic features in

the value and policy functions, we use a smooth approximation to the rule. Further detail

on this specification appears in the online appendix.

We begin each period as adults make their way upstream after harvest and straying has

occurred, but before the hatchery has taken a portion of the returning stream 1 fish. This

census point was chosen in order to reduce the number of dimensions the model must track

(since at this point, hatchery-reared fish have been absorbed into the subpopulations). Let the

state of the system be denoted by Xt = {N1,t, N2,t, µ1,t, µ2,t, G1,t, G2,t}. The augmentation

decision is a function of the state at the beginning of the period, Dt = D(Xt).

The stock at the time of harvest is a function of the state, decision and shock: N ′′t (Xt, Dt|εt).
Given a harvest rate of F , profit is given by:

(6) π(Xt, Dt|εt) = N ′′t · F (N ′′t ) ·
(
p− c ln

(
1

1− F (N ′′t )

))
,

where p is the ex-vessel price per fish, c is a harvest cost parameter and arguments of

N ′′t (Xt, Dt|εt) have been suppressed on the right hand side for conciseness. Parameteri-

zation of the profit function is discussed in detail in the online appendix. We assume that p

is constant, which is consistent with historical ex-vessel price observations from this fishery.

We also make the standard assumption that the marginal cost of harvest is increasing as

the stock decreases. Given a discount factor β, the Bellman equation which describes the

manager’s optimization problem is:

(7) V (Xt) = max
Dt

{
Eεt

[
π(Xt, Dt|εt) + βV (Xt+1)

]}
,

where Xt+1(Xt, Dt|εt) is specified in the systems dynamics section above. The optimal man-

agement rules are given by optimal augmentation policy function, D∗(Xt).

1.3 The ADP Solution Method

To find the value function of the dynamically optimized system described above, we use

a relatively new technique known as approximate dynamic programming (ADP). We use

this solution method because of its ability to handle the many state equations (governing

population sizes, genetic means and genetic variances) as well as the stochasticity from the

ocean upwelling. Traditional dynamic programming methods (e.g. value function iteration)
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involve backward iteration that is computationally intensive due to the need to consider the

entire state space at each backwards step. In contrast, ADP uses information from Monte

Carlo simulation of chains in the state space to iteratively improve the representation of the

value function. This approach is alternatively referred to as neuro-dynamic programming

or reinforcement learning (Hull, 2015). Emerging from the fields of computer science and

operations research (see Powell 2011), the technique has only recently been adapted to address

macroeconomic questions (Hull, 2015) and a generic application in fisheries (Springborn and

Faig, 2019).

As summarized by Judd, Maliar, and Maliar (2011), alternative numerical methods (to stan-

dard backward iteration) that can solve dynamic stochastic economic models fall broadly into

one of three classes: projection methods, perturbation methods, and stochastic simulation

methods. ADP belongs to the last of these. All three have their relative advantages and

disadvantages and the best choice varies by application. Projection methods, which approxi-

mate solutions over a pre-specified domain using deterministic integration, calculate solutions

quickly and accurately when there are few state variables, but slow down significantly as the

number of state variables increases. Perturbation methods, which find solutions locally using

Taylor expansions of optimality conditions, perform well when solving high-dimensional appli-

cations, but are limited in the range of their accuracy. Finally, stochastic simulation methods

can generate much smaller demands on computer memory, which facilitates high-dimensional

applications, like the case considered in this manuscript. While simulation methods can be

numerically unstable, Judd, Maliar, and Maliar (2011) illustrate how accuracy and stability

of the stochastic simulation algorithm can be achieved by normalizing certain variables and

modifying the regression step to handle ill-conditioned problems (i.e. through Tikhonov reg-

ularization). Finally, simulation methods can circumvent the need for numerical integration,

making otherwise infeasible problems tractable (Rust, 1997).

We outline our implementation of the ADP solution algorithm in detail in the online ap-

pendix. In broad strokes, the approach involves improving on the current estimate of the

value function by forward simulating multiple stochastic chains through the state space and

then updating the value function representation by regressing the state vectors on the corre-

sponding “observed” values.
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2 Results

We present results below in three parts. First, we describe the value function estimate and

implications for the value of biodiversity. Second we summarize the policy function charac-

terizing optimal management. Finally, we present simulation results to illustrate expected

outcomes in the system under the optimal augmentation policy compared to no augmenta-

tion.

2.1 Value Function

In Figure 2 we present the estimated value function over stock levels for each subpopulation

with all other states set to their modal levels. As expected the value function generally in-

creases with the population of either stock, since additional biomass is typically better for

future harvest profits. The value of an additional individual (in either stream) is high when

there is a low population, which results in a steep value function at low population levels.

Due to the density dependent nature of recruitment, as the population increases the value

function exhibits an “elbow” shape, after which the marginal value of additional fish dimin-

ishes abruptly and becomes negligible.9 This shape illustrates the need for the nonparametric

approach we take to model these curves since such an elbow shape is particularly difficult

to model with a parametric functional form. It might be tempting to address this challenge

with a piecewise polynomial function. However this is cumbersome if not unworkable since

the location of the elbow can depend on the level of other states and evolves as the iterative

solution technique proceeds.

In Figure 2 we see that the marginal value of reproducing adults in the stock with a hatchery

(N1) is larger (until the marginal value becomes negligible). These adults can contribute to

growth either through natural reproduction or, uniquely, hatchery production.10

9The young a spawning ground can support is limited by available space and resources. The first few thou-
sand individuals have a direct impact on the population size of the subsequent generation, and in diminishing
the likelihood the population will go extinct. Once enough adults return to the spawning ground, additional
individuals contribute little to the population size of the subsequent generation. Recall that the census point
at which we model the value function is after harvest and straying has taken place but before hatchery take
and spawning (see Figure 1).

10At high stock levels the value can decreases with additional stock. This effect is very small though
nonetheless present. It is not due to the direct effect of each stock on value (which is constrained to be
positive) but rather the interaction between the two stocks: the marginal value of stock in one stream is
decreasing in the stock level of the other stream. This is shown by the coefficients on the parametric population
interaction term from the regression model. As detailed in the online appendix, the value function model is
nonparametric except for the interaction terms, which are parametric. The coefficient on the N1N2 interaction
term is negative and significantly different from zero (p-value < 0.01).
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Figure 2. The value function over stock levels (horizontal axis) in each subpop-
ulation (1 and 2)
Note: All states that do not vary in a panel are set to their modal levels.

In Figure 3 we present the value function over each population’s mean genetic trait (migration

day), µi. We present these curves for different levels of genetic variance since there is an

interaction in the value of mean and variance. Each population has a mean genetic state that

maximizes future value, V . The ideal mean trait would be a level that maximizes survivorship

given mortality in migration (specific to a subpopulation) and ocean arrival (shared). For

subpopulation 2 we see this to be the case: the value function peaks between the trait level

best suited for the ocean and migration (see vertical lines). But for subpopulation 1, artificial

augmentation means that the ideal is suited almost exclusively for the ocean alone.11 The

broader insight is that artificial augmentation that bypasses elements of the natural life cycle

undermines incentives to maintain a population that is adapted for those natural conditions.

We show later in our simulation analysis how this leads to genetic erosion that leaves the

population in poor shape should managers ever seek a return to fully natural reproduction.

The various curves in Figure 3 provide an initial sense of the value of increasing diversity in

the form of genetic variance (i.e. value of higher Gi). We isolate this relationship in Figure 4

where we plot the percentage change in value as the genetic variance of each subpopulation

increases. For each subpopulation, we show two cases, one in which the mean trait of the

population (µi) is ideal for the value of the stock and another in which it is poor. Two

results emerge. First, the value of variation in this case is fairly small, leading to a increase

in value of 3% at most. Second, when each subpopulation genetic mean is near its ideal

11The value function is typically highest when subpopulation 1 has a mean migration date of day 49.5 and
stream 2 fish, 52.7. The only exception is at high levels of G1 which almost never occur when the system is
simulated (see the online appendix). A large portion of stock 1 fish do not undergo in-stream selection (day
43 is ideal for migration in stream 1) when they are trucked, whereas all stock 2 fish do experience in-stream
selection (day 57 is ideal for migration in stream 2).
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Figure 3. The value function over the mean genetic state (µi) subpopulation 1
(left panel) and 2 (right panel)
Note: Multiple curves within each panel depict the value at various levels of genetic trait
variance (Gi), from largest (thickest line) to smallest (thinnest line). All states that do not
vary in a panel are set to their modal levels. Dash-dot vertical lines indicate the ideal genetic
state for migration in subpopulation 1 (43) and 2 (57); dashed vertical lines indicate the ideal
genetic state for ocean conditions (50), which is shared.

level, the value of variation is very small or even slightly negative. Thus when the genetic

mean is best adapted to the conditions faced by a subpopulation, variance is of little (and

possibly negative) value. This latter result is intuitive but the weak value of variance in

general is surprising since it is conventionally believed to be quite valuable, at least when a

population’s genetic mean is not already ideally positioned. Qualitatively similar results hold

for a range of cases as shown in the online appendix.12 In general, we observe that the value

of trait diversity is small and depends on the genetic mean—the better adapted the existing

population is, the less value there is in variation.

2.2 Policy function

Despite concerns of a degraded portfolio, across most of the state space we find that the

optimal policy is to set artificial augmentation at its maximum (trucking hatchery fish over

their entire migration distance). For example, across the discretization of the state space

used in the ADP solution process, full augmentation is optimal at 82% of the loci. No

12Further insight into this relationship comes from the coefficients on the parametric interaction terms
(µiGi) from the value function regression model. Supporting the graphical analysis above, we find that as
variation (Gi) increases, value (V ) falls fastest when the mean trait (µi) is near its ideal (depicted graphically
in the online appendix).
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Figure 4. Relative percentage increase in value as a function of the genetic trait
variance in the subpopulation (G1, G2) for levels of the mean genetic trait state
(µ1, µ2) that are approximately ideal (49.5, 52.7) or poor (59, 40)
Note: All states that do not vary in a panel are set to their modal levels.

augmentation is optimal in 7% of the loci, and partial augmentation is optimal at 11% of

the loci. These percentages will change depending on the particular discretization considered

but quickly provide a coarse summary of the preponderance of optimal management choices.

Optimal augmentation that is less than maximum (partial or zero) is more common when

the subpopulation with the hatchery (stream 1) is low. This is somewhat surprising since

augmentation serves to boost survivorship of these individuals. However it does so at the cost

of increased spillover (straying) to the other subpopulation, just when these individuals are

needed most. Less than maximum augmentation is also more common when subpopulation 1

is well adapted to face its unique migration mortality.13 The policy function illustrating this

case is presented in Figure 5. For subpopulation 1 (left panel) we see that less augmentation

is preferred when µ1 is lower, i.e. near its ideal for minimizing migration mortality. Intuitively

this effect is stronger when the population is tightly distributed around this mean (lowest

G1). Here the relative returns to augmentation here are low since natural migration mortality

is at its lowest.

For the non-hatchery stream (2), maximum augmentation is optimal more frequently when

N2 is very low. This demographic driver is intuitive since when N2 is low there is a stronger

recovery value to spillovers (straying hatchery fish). In the right panel of Figure 5, we see

that more augmentation is appealing when the mean trait (µ2) is at an ill-suited extreme

(high or low)—in this case more strays from stream 1 (induced by augmentation) are useful

to bring stream 2’s mean trait towards the center. This effect is also strongest when the

13I.e. the genetic mean is near or just below the in-stream 1 ideal, µ1 = 43.

15



Figure 5. Optimal augmentation policy as a function of µi for subpopulation 1
(left) and 2 (right)
Note: All hidden state variables are at their modes except for N1 which is set as the lowest
non-zero value in the ADP grid (N1 = 42).

stream 2 population is tightly distributed around any given mean (i.e. G2 is low).

Overall optimal management depends on a combination of demographic (biomass) and genetic

effects. However, in this case demographic implications dominate, for example, through

immediate survivorship of subpopulation 1 migrators and recovery implications for both

threatened stocks. This suggests that despite loss from genetic erosion, such degradation

may be compensated for by demographic advantages, an outcome demonstrated explicitly

below.

2.3 Simulation analysis of dynamic outcomes

To explore implications of the optimal policy we generate Monte Carlo simulations of the

system using 3,000 repetitions over 50 periods. For comparison with the optimal policy we

also consider the case in which no artificial augmentation is used.14 While starting points

in the state space are chosen randomly, mean paths for the simulated variables stabilize by

period 30, as shown in the online appendix. In the analysis below, we exclude this initial

burn-in time frame and report results based on average outcomes over the remaining 20

periods.

In Figure 6 we show simulation results for each state variable for subpopulation 1 (top row)

and 2 (middle row) as well as the aggregate population, profit and variance (bottom row).

14Simulation results for a policy of maximum augmentation in all cases (not pictured) are essentially indis-
tinguishable from those under the optimal policy.
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Change in mean outcome

genetic genetic population, profit, wild origin

population mean, µ variance, G N π share

subpop. 1 0.1 -1.0 3% . -0.063

subpop. 2 -2.3 -1.4 23% . -0.382

aggregate . -2.8 11% 16% .

Table 1. Change in the mean outcomes (in percentage or raw terms) due to a
shift from none to optimal augmentation
Note: Statistics represent simulated averages over time after excluding the first 30 periods
for burn-in.

Specifically, we plot the cumulative mass functions (CMFs) for each variable to show how

the distribution of outcomes differs between the optimal (dashed line) and no augmentation

(solid line) policy. We focus on CMFs since we are concerned with the potential for both

expected outcomes and extreme, boom or bust outcomes. The mean outcome level in each

case is depicted with a star. In the accompanying Table 1 we summarize the change in

these mean outcome levels due to a shift from no augmentation to optimal augmentation.

Before we consider specific variables, the table highlights a surprising overall pattern that

holds for all the key outcomes: although artificial augmentation centers on subpopulation 1,

the largest impacts in every case are spillover-driven effects experienced by subpopulation 2.

This illustrates that it can be the spillover effects on other populations (both good and bad)

that dominate the bottom line, rather than the more obvious direct effects of management

on the target population.

2.3.1 Characterizing portfolio loss

Considering specific variables, we begin by highlighting substantial shifts in the genetic

makeup of the stock complex. Panels A and D show that optimal augmentation causes

the genetic mean for both subpopulations to converge towards each other (dashed curves in

panels A and D are closer together than solid curves). The effect is stronger for subpopulation

17



Figure 6. Cumulative mass functions showing likelihood of outcomes for state
variables for subpopulation 1 (top row) and 2 (middle row) as well as aggregate
variables (bottom row) under no augmentation (solid lines) and optimal augmen-
tation (dashed lines)
Note: For the 3,000 simulation runs of 50 periods, the first 30 periods are excluded for
burn-in. Stars indicate mean outcome level.

18



2 and is due to increased spillovers from subpopulation 1.15 This loss of between-population

diversity is mirrored by a loss of within-population diversity. In panels B and E we see that

the expected genetic variance shrinks for both subpopulations under optimal augmentation

(dashed curves shift left). Again, as summarized in Table 1, this effect is stronger in subpop-

ulation 2, which experiences spillover effects (rather than subpopulation 1 which experiences

the direct effects of artificial augmentation). We can also calculate a metric of aggregate ge-

netic variance for the stock complex, which is a function of all six state variables (see Dedrick

and Baskett, 2018). We show this measure in panel H—mean aggregate genetic variance falls

from 7.2 with no augmentation to 4.4 under optimal augmentation.

Overall we see a clear loss of heterogeneity in the system from artificial augmentation, both

in converging genetic means and falling genetic variances. Under the logic of the portfolio

effect, we might expect such loss of diversity to increase boom and bust cycles, possibly

leading to lower returns in the complex. However, we find that the opposite is the case. We

show in panels C and F that optimal augmentation narrows the range of likely stock levels

for both subpopulations. Both extreme low and extreme high stock levels are less likely. The

net effect is an increase in mean stock sizes for both streams. Again, these effects are most

pronounced for the for the population without the hatchery (2).

2.3.2 Net effects on biomass

We might also expect the aggregate stock outcomes (N1 + N2) to mirror outcomes in the

subpopulations. Instead we see in Figure 6, panel I, that the likelihood of extreme low

stocks is essentially unchanged, while the likelihood of extreme high stocks substantially

increases. Two dynamics drive this outcome. First, in panels C and F we see that the

likelihood of low population levels is dimished more than for high populations, especially

for subpopulation 2. Second, the management intervention reduces the pronounced, inverse

coupling of the two populations—a strong negative correlation between subpopulation levels

under no augmentation (-0.91) weakens (-0.45) under optimal augmentation.16 No longer is

a strong performance in one stock so tightly connected to poor performance in the other.

Stock outcomes suggest that the value of substantial augmentation in terms of additional

biomass outweighs the cost of porfolio loss. This is confirmed in panel G where we present

15Subpopulation 1’s genetic mean increases because artificial augmentation reduces migration selection
which favors earlier timing.

16The strong counter-movement under no augmentation occurs because when shared environmental condi-
tions (in the ocean) are particularly suited for one subpopulation (e.g. early food availability favoring early
arrivers from subpopulation 1) they are ill-suited for the other.
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the CMF for profits.17 Optimal augmentation raises mean profits by approximately 16%. A

remaining concern is that volatility of profits will also rise due to loss of the diversity in the

portfolio. We see in panel G that the spread of profit levels is indeed greater with optimal

augmentation. However, the additional variation is almost exclusively upside risk ; while the

lower section of the CMF for profit remains essentially fixed, the upper section shifts towards

higher values.18

In a sensitivity analysis, we considered alternative levels for several key parameters (strength

of ocean selection mortality; strength of freshwater selection mortality; carrying capacity; fe-

cundity; and the maximum hatchery production). We find that a key result above continues

to hold: maximum artificial augmentation (trucking) leads to an increase in the variance of

total population but also the highest expected total population and thus the highest returns.

Only variation in one parameter considered comes close to generating an alternative conclu-

sion: the inverse strength of ocean selection, S0. The higher the level of this parameter, the

lower the mortality experience by the resource when their key behavioral trait is a poor match

for stochastic natural conditions (i.e. when their ocean arrival is poorly timed). Relative to

the original base case (S0 = 20) when inverse ocean selection is much higher (S0 = 50) we

find that full augmentation still leads to the highest expected population levels—but just

barely. Increasing this parameter creates two competing effects. First, there is less mortality

from genetic mismatch with environmental conditions, which reduces a cost of artificial aug-

mentation. But this drop in overall mortality also reduces the need for artificially boosting

the population. We find that the latter effect is strong, but not strong enough to reverse

baseline model conclusions.

Another potential unintended side-effect of hatchery management is loss of wildness, i.e. the

replacement of wild-reared individuals with those from the hatchery. In Figure 7 we sum-

marize the origin of reproductive adults. Specifically, we present the share that come from

wild-reared juveniles versus hatchery stock (averaged across simulation runs). Relative to

no augmentation, the optimal augmentation policy (mostly maximum augmentation) sub-

stantially increases reliance on artificial hatchery stock. For the subpopulation 1, hatchery

spawners increase from an average of 29% to 38%. More strikingly, for subpopulation 2 (with

no hatchery), hatchery spawners increase from an average of just 4% to 47%. In fact, under

optimal augmentation with the associated increase in spillovers, the majority of subpopu-

lation 2 spawners are from the other subpopulation—either hatchery-origin (47%) or wild

(4%).

17Profit is not separated by stream since the ocean fishery combines both populations.
18For further perspective into how optimal augmentation changes likely outcomes, in the online appendix

we show the relative frequencies for both subpopulations at once for each state variable.
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Figure 7. Mean share of spawner source for subpopulation 1 (left) and 2 (right)
under no augmentation and optimal augmentation
Note: “wild”=naturally reared, “own”=from the same subpopulation, “other”=from other
subpopulation.

2.3.3 Implications of a degraded portfolio

To explore implications of the degraded portfolio if hatchery production were to cease, we

extended each of the 3,000 simulations from above for another 30 periods with no hatchery

production (and therefore no augmentation either). In Figure 8 we present mean outcomes

for each state variable and for profit. The state variable panels (first three panels) show

that without artificial augmentation, the system adjusts to a hatchery shutdown faster and

more smoothly: population sizes and trait means and variances equilibrate in 10-15 periods

(versus 20-25). As discussed in the previous section, augmentation increases stock size while

degrading the portfolio. As a result of augmentation (and spillovers), subpopulation 2 is

particularly poorly suited to local conditions, which can be seen by the large adjustment

in the trait mean (µ1) that follows the hatchery shutdown (top right panel). As a result,

initial survivorship of subpopulation 2 stock is poor (top left panel). When the hatchery was

operational it more than compensated for the poor survivorship of wild fish in subpopulation

2. When hatchery production stops, so too does this compensation, resulting in a swift initial

decline in subpopulation 2.

The bottom right panel of Figure 8 shows that when the hatchery shuts down, if there was no

augmentation prior to closure then annual profit drops directly to its new mean. Alternatively,

under pre-closure augmentation, the drop in stock is greater and the expected profit lower (by

14% in the first period), compared to the no augmentation case. Wild stocks do eventually

adapt and expected profit recovers after a number of periods. Overall a degraded portfolio
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Figure 8. Mean levels for state variables (for subpopulations 1 and 2) and profit
once hatchery production ceases, if the hatchery was optimally (‘opt’) or not
(‘none’) augmentated prior to shutting down
Note: Results are based on 3,000 simulation runs across 30 periods. In the final panel, 90%
confidence intervals (‘conf’) are shown around mean profit.
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leaves the system ill-suited for a return to fully natural production, though it eventually does

recover.

Our quantitative genetic model supports wide flexibility in the level of the trait of interest.

A limitation of this approach is that it does not capture potential irreversibility in loss of

the portfolio. Regardless of the degradation, the model allows eventual recovery to a genetic

state that is adapted to a particular scenario. This arguably results in an optimistic picture

of capacity for recovery. Our model might overstate the amount of likely genetic diversity

available for adaptation to changing conditions. For example, at small or highly variable

population sizes, particular genes may disappear due to stochasticity in survivorship and

reproduction (i.e. genetic drift and bottlenecks) (Lande, 1998).

Unfortunately it is not feasible to capture these complexities within our current model (with-

out vastly increasing the dimensionality of the state space). However, as a proxy experiment

we repeat the hatchery shutdown simulation experiment with one change: the genetic state

in each simulation remains fixed at the level observed immediately before the shutdown.

This provides a window into a particularly pessimistic scenario in which the capacity for

subsequent adaptation has been lost. Relative to no augmentation, having been optimally

augmenting before the hatchery shutdown leads to a lower aggregate mean stock that is also

highly skewed towards subpopulation 1 (at a ratio of 2:1) and thus an ongoing mean profit

that is 17% lower. This mean penalty for having degraded the portfolio through artificially

augmentation is similar in magnitude to the mean profit boost augmentation provides while

the hatchery is active. The perfect irreversibility of portfolio degradation in this scenario is

an extreme case. However it suggests that if potentially valuable genes are lost—e.g. from

augmentation used to increase fishery profits in the short term—some level of productivity

would be permanently lost should the hatchery be retired.

3 Discussion

Our results illustrate how practices that homogenize natural resources through loss of genetic

diversity can still generate net returns from a profit perspective. On one side of the tradeoff,

augmentation erodes diversity both within subpopulations and between them. However, the

lost portfolio effect is outweighed by the demographic effect (direct increase in biomass).

Such a finding is not unique to our application—for example, Heisey et al. (1997) find that

Pakistani wheat growers favor a narrow set of cultivars with high short run yields over a

genetically diverse set with better long run resistance to rust.
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Although returns in our model are bolstered by substituting more physical capital and labor

for natural capital, additional dependencies and unintended consequences result. The physical

capital must be maintained for gains to persist, the capacity for adaptation should this capital

be removed is weakened, and wildness of populations can dramatically fall.

A variety of U.S. policies express a societal value for species wildness in the form of natural

genetic diversity. For example, under the Endangered Species Act, each genetically distinct

and reproductively isolated salmon stock (evolutionarily significant unit) receives separate

consideration for listing due to its unique contribution to the “evolutionary legacy” of the

species (Waples, 1991). In addition, hatchery management plans for California’s fall-run Chi-

nook salmon have the mitigation of “impacts to naturally produced salmonids” among their

goals, including strategies to “reduce ecological and genetic interactions” between hatchery

and wild fish (e.g., Lee and Chilton, 2007). While loss of wildness is qualitatively understood

to be problematic, operationalizing this loss of natural capital such that the ecosystem service

impact can be endogenized in the bioeconomic model is a promising track for future research.

It is important to acknowledge that several assumptions could lead to understatement of the

genetic consequences of augmentation. First, in such systems particular genes may completely

disappear due to stochasticity in survivorship and reproduction. This leads to a loss of overall

genetic diversity and therefore adaptive capacity (Lande, 1998). In certain circumstances the

model used here could overstate the amount of genetic variation remaining in the population.

Accounting for the resulting genetic drift and bottlenecks of gene loss would require following

many individual genes rather than the overall genetic mean and variance as we do here.

Second, hatcheries impose domestication selection on a variety of traits that can reduce

survivorship and reproductive success in wild populations when interbreeding occurs (Araki,

Cooper, and Blouin, 2007; Reisenbichler and Rubin, 1999). Accounting for additional fitness

consequences of hatcheries would require following multiple co-evolving traits. By focusing

on a single trait, as we do here, might underestimate the demographic and productivity

consequences of hatchery-wild interbreeding. Finally, we focus on two subpopulations; having

a more realistic representation of a larger number of streams would increase the amount of

genetic variation across streams that hatchery practices could affect.

A number of additional assumptions made for tractability bare discussion as caveats and

avenues for further research. First, our environmental shock is stationary. One might expect

the value of diversity to be higher in the presence of regime shifts that change favored behav-

ior. We did test to see how optimal management would change under non-stationary, Pacific

decadal oscillation (PDO) driven shocks. However, we find that the qualitative results are

similar despite the possibility of large intermittent shifts in ideal behavior. Also with respect
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to the shock process, it may be that an important source of value to adaptive capacity stems

from directional environmental change (i.e. shifts in a consistent direction) such as under

climate change, which was not explored here.

We also treat harvest as a separate and fixed management variable; our harvest control rule

is a stylized version of the current rule used in this system. Previous work in the same system

(Garnache, 2015) has shown that returns to optimizing management in non-harvest elements

of the life cycle depend on whether harvest effort is rationalized. Future work will determine

how important harvest is in managing the portfolio effect, and how an optimal harvest policy

affects augmentation policy. Other likely relevant decision variables include the timing of

water releases from dams and the output level of the hatchery.

Finally, this paper also introduces the use of approximate dynamic programming (ADP) to

solve bioeconomic problems of substantial dimension. ADP facilitates, for the first time,

dynamic optimization of a model with a continuous genetic trait without any simplifying

constraints on the policy function. Comprehensive management of natural resources means

accounting for multiple dimensions of the natural capital stock, including multiple stocks of

biomass, genetic diversity and information. ADP presents a useful new tool for expanding

the set of feasible problems that can be solved.
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Appendix

A Summary of model parameters

In Table 2 we summarize the model parameters.

26



Parameter Description Value Units

ζ fraction of stream 1 returning adults that the hatchery
takes

0.25

Hmax maximum number of adults the hatchery can take 600† fish

Ri, i = 1, 2, 1∗ fecundity 200 smolt per spawner

Ki, i = 1, 2 carrying capacity of stream i 3× 105 smolt

VLE variance linkage equilibrium 5

κwild wild in-stream survival, not selection based 0.7

E environmental variance 10

N minimum viable population 25 fish

Si, i = 1, 2 inverse in-stream selection strength 20

So inverse ocean selection strength 20

(µ1, µ2) in-stream selection for migration in streams 1 and 2 (43, 57)† Julian day

(µo, τo) mean and variance of ideal migration day, with respect
to ocean upwelling

(50, 25†) Julian day

M instantaneous rate of natural mortality 0.2

θ responsiveness parameter for in-stream selection to
augmentation

0.5

σ natural straying rate 0.05

qmax straying rate if trucked the maximum distance 0.5

p price per fish 76.9 $

c harvest cost parameter 39.8 $

ctruck cost of trucking maximum distance 200 $

β discount factor 1/1.03

α initial step size 0.85

γ step size decay rate over number of regression steps 5× 10−5

φ threshold for switching to decreasing step size (abso-
lute relative deviation in the mean value)

1× 10−3

m number of regression updating steps over which the
convergence metric is averaged

10

ω tolerance for convergence 2.5× 10−3

Table 2. Summary of parameters
Note: Biological model parameter values used are the same as in Dedrick and Baskett (2018),
except where noted with a †.
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Additional model details

Population dynamic equations

κi,t

(
Dt|µ′i,t, G′i,t

)
represents combined migration and selective ocean survivorship (before

any ocean harvest) of juvenile population i and is a function of the decision variable and the

genotype mean and variance of juveniles. The juvenile time step is indicated by the single

prime notation, as for N
′
i,t above. See Appendix 1.2 for the genetic dynamic equations in full.

A share of the population, exp(−2M), survive non-selective ocean mortality for two years

before returning (where M is the instantaneous rate of natural mortality). The number of

fish that survive and return to spawn as mature adults (in the absence of harvest) is given

by:

(1) N ′′i,t = N ′i,t · κi,t
(
Dt|µ′i,t, G′i,t

)
· exp(−2M).

During their time in the ocean, juveniles mature to adults and are subject to harvest at

proportion Ft. The number of surviving adults is N ′′′i,t = N ′′i,t(1−Ft).
1 We assume that if the

number of aggregate survivors, N ′′t =
∑

iN
′′
i,t, falls below a “quasi-extinction threshold”, N ,

the aggregate population goes extinct.2

Returning adults separate as they swim upstream towards the spawning ground, given a small

amount of straying of natural fish (σ) and straying of hatchery fish (q(Dt)) that depends on

1While CVC salmon are typically in the ocean for two harvest cycles, during the first harvest period they
are exposed to they are generally under commercial and recreational size limits (O’Farrell et al., 2013, p. 6).
Thus we include a single season of mortality from harvest.

2This quasi-extinction threshold is based on research by Lindley et al. (2007) who argue that extinction
risk is high when the stock falls below a given threshold. For a full description of how this threshold was
chosen, see Appendix 1.3.
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the management decision (see main text Equation 5). The resulting population sizes are

N1,t+1 = (1− σ)N ′′′1,t + σN ′′′2,t + (1− q(Dt))N
′′′
1∗,t(2)

N2,t+1 = σN ′′′1,t + (1− σ)N ′′′2,t + q(Dt)N
′′′
1∗,t.

Genetics dynamic equations

Here we provide the full genetic model, the derivation of which is in Dedrick and Baskett

(2018). The genetic mean value of the trait of interest for juveniles is identical to that of

their parents:

(3) µ′i,t = µi,t

The genetic variance for juveniles is equal to:

(4) G′i,t =
VLE

2
+
Gi,t

2
,

where Gi,t is the genetic variance of the returning adult populations and VLE is the so-called

“variance at linkage equilibrium”. This follows from the random mating of the parents and

assumes constant genetic variance at inheritance. Without VLE , selection could eventually

drive the genetic variance of each population to zero, which is unrealistic.3 These measures

of central tendency and spread are derived from the dynamics for the full population density

distribution over all genotypes of a quantitative genetic trait assuming a normal distribution

for each population.

After maturing for a time in the stream, the juvenile salmon out-migrate towards the ocean.

This journey involves migration mortality in the stream that is both phenotype-independent

3We use the infinitesimal model which assumes that a large number of unlinked loci each contribute
additively to the overall genotype, such that offspring inherit their genotypes from their mid-parental mean
with a variance of VLE (Turelli and Barton, 1994).
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(e.g. predation) and phenotype-dependent (i.e. selective) given optimal-timing factors such

as stream flow, temperature, etc. For the phenotype-dependent survival, we first convert

genotypes (genetic predisposition for a particular migraiton time) to phenotypes (f , actual

migration time), where phenotypes are normally distributed around genotypes with random

environmental variance E, to account for non-genetic factors that might influence phenotype.

Then for stream-dependent survival, we implement stabilizing selection for an optimal value

(optimal outmigration time) xi unique to each stream i. Under stabilizing selection, fitness,

exp(−(f − xi)2/(2 ∗ Si)), declines for any phenotype departing from the optimal value ac-

cording to a bell-shaped function with variance Si such that 1/Si represents the strength of

selection (in other words, a narrower fitness function, or lower Si, means a steeper drop-off

in survival with phenotypic departures from the optimum and therefore strong selection).

For ocean-dependent survival, we again implement stabilizing selection with selectional vari-

ance SO and optimal value εt
iid∼ N (µO, τO) that varies stochastically in time as it depends

on upwelling date, i.e. the fitness is exp(−(f − εt)2/(2 ∗ SO)). Integrating fitness over all

phenotype-genotype combinations provides the combined migration and selective ocean sur-

vivorship (before any ocean harvest) is given by:

κi,t
(
Dt|µ′i,t, G′i,t

)
=

κ̃i(Dt) exp

−(E +G′i,t)(εt − xi)2 + Si(εt − µ′i,t)2 + So(xi − µ′i,t)2

2
(

(E +G′i,t)(Si + So) + SiSo

)
√

(E +G′i,t)(Si + So) + SiSo

SiSo

.

(5)

Note that this approach combines two outmigration events, stream outmigration timing and

ocean arrival timing, which are separate but highly correlated traits in reality (Carlson and

Seamons, 2008), into a single “outmigration date” trait (i.e., date of departing streams to

the ocean) for simplicity.
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The strength with which in-stream selection acts on the fish population (and thus the strength

with streams are naturally kept heterogeneous), 1/Si, is dependent on distance trucked for

hatchery fish but constant for wild fish:

(6) Si =


S if i = 1, 2

S exp(Dt/θ) if i = 1∗,

where θ determines the responsiveness of in-stream selection to trucking. When there is no

augmentation, Dt = 0, in-stream selection for hatchery fish is the same as for wild fish in

stream 1. As trucking distance increases, Si∗ increases and thus in-stream selection strength

for hatchery fish (1/Si∗) falls. In other words, after hatchery release, hatchery fish migrate

the remainder of the distance according to their phenotype, such that trucked fish experience

some stream-based selection for the same optimal trait, but the strength of that selection

weakens with increasing trucking distance because trucking bypasses part of the selection

experience. We assume that fish trucked the full distance will remain at the stream mouth or

bay until they reach the phenotype-dependent development stage for migration from the fresh-

water to the saltwater environment, and during this period the fish can experience mortality.

Therefore, trucking the full distance still incurs some (albeit weak) with-stream selection,

and all fish, irregardless of trucking distance, experience the same ocean selection.

The mean genetic value (migration date) after both in-stream and ocean selection occur is

µ′′i,t =
µ′i,t(E(Si + So) + SiSo) +G′i,t(εtSi + xiSo)

(E +G′i,t)(Si + So) + SiSo
,

and the genotype variance post-selection is

G′′i,t =
G′i,t(E(Si + So) + SiSo)

(E +G′i,t)(Si + So) + SiSo
.
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After harvest, fish returning to spawn have a genotype mean given by

µ1,t+1 = (1− σ)
N ′′′1,tµ

′′
1,t

N1,t+1
+ σ

N ′′′2,tµ
′′
2,t

N1,t+1
+ (1− q(Dt))

N ′′′1∗,tµ
′′
1∗,t

N1,t+1

µ2,t+1 = σ
N ′′′1,tµ

′′
1,t

N1,t+1
+ (1− σ)

N ′′′2,tµ
′′
2,t

N1,t+1
+ q(Dt)

N ′′′1∗,tµ
′′
1∗,t

N1,t+1
,

and a genotype variance of

G1,t+1 = (1− σ)
N ′′′1,t(G

′′
1,t + (µ′′1,t)

2)

N1,t+1
+ σ

N ′′′2,t(G
′′
2,t + (µ′′2,t)

2)

N1,t+1

+ (1− q(Dt))
N ′′′1∗,t(G

′′
1∗,t + (µ′′1∗,t)

2)

N1,t+1
− (µ1,t+1)2,

G2,t+1 = σ
N ′′′1,t(G

′′
1,t + (µ′′1,t)

2)

N1,t+1
+ (1− σ)

N ′′′2,t(G
′′
2,t + (µ′′2,t)

2)

N1,t+1
+ q(Dt)

N ′′′1∗,t(G
′′
1∗,t + (µ′′1∗,t)

2)

N1,t+1

− (µ2,t+1)2.

Hatchery production and extinction threshold

In our model, the hatchery takes 25% of the returning stock until 600 spawners are selected,

such that hatchery production is at its maximum at a stock of 2400 and above. We assume

that at 2400, the extinction risk is negligible. In the context of spring- and winter-run

Chinook salmon, Lindley et al. (2007) argue that when the stock falls below 250, extinction

risk is “high”, i.e. the chance of extinction in the next 20 years is over 20%. In our model

we use a deterministic threshold for determining when the population goes extinct. We set

this threshold at 25, i.e. at 10% of Lindley et al.’s high risk threshold.
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Status quo harvest rule

The Pacific Fishery Management Council’s harvest plan for Sacramento River Fall Chinook

(SRFC), summarized in Winship et al. (2015, p. 562) is given by

FSQ(N ′′t ) =



0.1N ′′t
η1

if N ′′t ∈ [0, η1)

0.1 if N ′′t ∈ [η1, η2)

0.1 +
0.25− 0.1

η3 − η2
(N ′′t − η2) if N ′′t ∈ [η2, η3)

0.25 if N ′′t ∈ [η3, η4)

min

{
1− Ñ

N ′′t
, 0.7

}
if N ′′t > η4.

The rule specifies constant escapement at Ñ—the stock associated with the maximum sus-

tainable yield—with two exceptions that depend on the aggregate number of all wild and

hatchery fish, N ′′t . At high stock levels the exploitation rate is capped at F = 0.7. At low

stock levels, where F would otherwise fall below 0.25, a higher exploitation rate is specified

than would result in an escapement of Ñ . η = [η1, η2, η3, η4] are the stock levels where the

harvest rule changes. From Winship et al. (2015) we have ηSRFC = [5e4, 9e4, 11e4, 162.7e4].

Since we set the scale of our system at one quarter of the size of the aggregate fall run Chi-

nook stock complex, we use η = 0.25ηSRFC . We use a smooth, best-fit approximation to the

rule given by:

(7) F (N ′′t ) = min{7.7025e−6 ·N ′′t , 0.702}.
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Profit function parameters

There exists relatively good information on California chinook harvest revenues but relatively

poor information on harvest cost. Information on stock levels, harvest levels (numbers and

weights), and prices is available from the “Stock Assessment and Fishery Evaluation Doc-

ument for the Pacific Coast Salmon Fishery Management Plan” (PFMC, 2014). We set p,

the price per fish, at $76.9 given by the product of the 2010-2014 average pounds of dressed

weight per fish (13.4 lbs) and price per pound ($5.74 per lb). When there are no ready sub-

stitutes for fish consumed from a particular stock, we would expect the unit price to generally

increase as the quantity supplied in a given year falls. However, for California chinook prices

from 2006-2014 have been relatively stable ($5.44-$6.33 per lb) despite wide swings in levels

of commercial harvest (0.23M - 3.79M lbs). Because there is no discernible trend in the price

as quantity varies, we assume that p is constant over the level of harvest. In a model of the

California chinook commercial fishery, Garnache (2015) parameterizes cost by calibrating to

a total harvest cost estimate for the fishery from 2006. Because 2006 involved relatively low

harvest and high escapement, this approach likely leads to a high estimate of costs. Indeed,

such a parameterization implies that any exploitation rate above approximately 36% results

in negative profits. Observed exploitation rates in this system routinely exceed this level. We

parameterize the cost function such that, when the harvest control rule is considered, profits

do not decline as the stock level increases (c = 39.8).

ADP solution method details

The steps to estimate the value function using ADP are as follows (see the main text appendix

for specific parameter values):

1. Set ADP parameters.

(a) Choose the time horizon, T , for each simulation.
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(b) Choose the number of simulations, n̄, to complete in a block before executing each

regression step and set the regression counter to zero, z = 0.

2. Initialize the value function and the state space.

(a) Set an initial guess for the value function by initializing the parameter vector, θ,

of the approximating model, V̄ z=0(X; θ).

(b) Define a discretization of the state space, X̂.

3. For each simulation iteration n = 1, ..., n̄, in block z + 1 execute the following steps:

(a) For the initial period, t = 1, randomly select a state vector, Xn
t=1.

(b) For each period t = 1, ..., T , in the simulation execute the following steps:

i. Compute the next period state vector, Xn
t+1(Xn

t , Dt|εt), for simulation n for

each possible choice (Dt) and upwelling date (εt)

ii. Calculate the value for the period for every possible choice and upwelling date:

vnt (Xn
t , Dt|εt) = π(Xn

t , Dt|εt) + βV̄ z(Xn
t+1)

iii. Find the expected value of each choice by summing a weighted average of the

possible upwelling dates:

E

{
vnt (Xn

t , Dt|εt)
}

=
∑

vnt (Xn
t , Dt|εt)f(εt),

where f(εt) is the probability mass function for upwelling date, εt.

iv. Choose D∗t to maximize expected value

max
Dt

E

{
vnt (Xn

t , Dt|εt)
}
.

v. Randomly select the upwelling date for this period, ε∗t .

vi. Compute the value of having chosen D∗t conditional on the actual shock:

ṽnt = vnt (Xn
t , D

∗
t |ε∗t )
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vii. Set the step size, δt ∈ [0, 1], specifying the weight placed on ṽnt in the updating

step that follows.

viii. Compute the expectation with a linear combination of the newly calculated

value and the previously approximated value at state Xn
t :

Ṽ n
t = δtṽ

n
t + (1− δt)V̄ z(Xn

t ).

(c) After completing n̄ simulations of T periods each, there are n̄ ∗ T observations of

the state vector visited (X) and the associated updated value estimate (Ṽ). Scale

and center the data and regress Ṽ on X.4

(d) Increment the regression counter by one (z = z + 1) and define V̄ z as the fitted

model from the regression.

(e) Check for convergence. Calculate the maximum relative deviation between the cur-

rent and former value function estimate: ∆z = max{(V̄ z(X̂)−V̄ z−1(X̂))/V̄ z−1(X̂)}.

Let ∆z̄ represent the average of ∆z over the last m regressions. If ∆z̄ < ω, the

convergence criterion is met and the program can be terminated.5 Otherwise,

repeat step 3.

After convergence, the final optimal policy function D(Xt) is computed using the final esti-

mate of the value function above, V̄ = V̄ z.

Implementing the ADP algorithm above requires making choices over a set of solution method

parameters and functional forms, which are detailed in Appendix 1.6. A central challenge in

any dynamic programming problem is to implement a representation of the value function

using either a lookup table, parametric model or non-parametric model (Powell, 2011, p.

4In our application we do not find that the data is ill-conditioned for regression. However, when this is not
the case a Tikhonov regularization can be used to facilitate regression as follows. Replace the X′X component
of the standard OLS equations with (X′X + ηIn), where η is a very small number (e.g. 10−5) and In is
the identity matrix, such that β = (X′X + ηIn)−1X′Ṽ. An equivalent approach involves simply augmenting
(appending) the matrix ηIn to the data matrix X, and adding a vector of zeros of the same length to Ṽ .

5Using the average maximum deviation over several iterations (m > 1) helps avoid premature stopping that
may result when a pair of regressions happen to produce similar results. We iterate until ∆z̄ < ω = 0.25%
which results in an average absolute deviation across all nodes considered in the state space of 0.005%
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233). Existing applications have used either a lookup table (e.g. Hull, 2015) or a parametric

model (e.g. Judd et al., 2011; Maliar and Maliar, 2013). A lookup table for the value function

defined at discrete values is simple in that it does not involve assuming any special structure

in the value over the state variables. But unless states are naturally discrete at level of

coarseness of the lookup table, the solution will require aggregation whereby intermediate

levels are collapsed around the neighborhood of a node. This creates bias in the value

function, specifically a departure between the true value at a point and the aggregate value

for its neighborhood (Powell, 2011, p. 299). In contrast, parametric (e.g. polynomial) models

exploit structure in the value over the state variables (Powell, 2011, p. 304). The advantage

is that fewer points are needed and optimization is accelerated by the increased smoothness

(Judd, 1996). However, as Powell (2011, p. 316) summarizes, the promise of parametric

models is countered by a key handicap: “they are only effective if you can design an effective

parametric model, and this remains a frustrating art”.

To address the weaknesses of both lookup tables and parametric approximations, we imple-

ment a nonparametric representation of the value function. This generates a continuous func-

tion that allows for very flexible behavior without the need to choose specific basis functions

or structure. Powell (2011, p. 316) observes that nonparametric methods hold “tremendous”

promise but face substantial challenges. We take advantage of recent advancements in non-

parametric statistics (Meyer and Liao, 2016) which allow the “data” to establish both the

structure and actual levels of the function.6 Parametric approximation of the value function

can lead to instabilities in the solution procedure from poor interpolation between the nodes,

for example because overall shape is not preserved (Judd, 1996) which can result in loss of

a convex optimization problem needed to identify a global optimum (Cai et al., 2017). The

nonparametric approach allows for shape preservation (concavity and monotonicity) if there

6Specifically, we use the constrained generalized additive model (CGAM) routine of Meyer and Liao (2016)
based on results from Meyer (2008). This approach generates a maximum likelihood estimator that is identified
using an iteratively reweighted cone projection algorithm. The CGAM routine also allows for the imposition of
various constraints over shape (concavity/convexity), monotonicity (increasing/decreasing), and smoothing.
These constraints establish a convex cone, which motivates use of the cone projection algorithm. CGAM
implements a nonparametric regression using ordinal basis functions serving as the regressors in an ordinary
least-squares model with a Gaussian error term.
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is reason to believe such properties will hold. This feature has also been pursued in the

realm of parametric models. For example Cai et al. (2017) modify a Chebyshev polynomial

approach to impose shape constraints at the nodes, though global shape preservation is not

assured and must be tested and nodes tuned. In contrast, the approach used here ensures

shape constraints are met and no tuning is needed.

In our model for the value function, each state variable enters additively in nonparametric

form. Because we expect the direct contribution of biomass to always be positive, we constrain

the direct contribution of N1 and N2 to the value function to be increasing. We also include

several interaction terms but do so parametrically for computational reasons, explained in

detail in the next section below. While the core of the value function model is nonparametric,

our modeling of interaction terms results in a semi-parametric specification.

ADP implementation

The number of periods per simulation, T , is selected to balance the tradeoff between ensuring

the implications of starting at a given state are “felt” (e.g. the potential for extinction)

and avoiding excessive representation of the steady state region in which simulation chains

congregate given sufficient time. The number of simulations in a block between each regression

step, z, is selected to balance another tradeoff, i.e. between better representation across the

state space and slower incorporation of new information and movement towards convergence

(as z increases).

The step size, δt, specifies the relative weighting of new versus existing information. A

larger weight on new information is useful at the outset since the initial guess may be poor.

However, as information accumulates in the value function estimate a lower weight is desirable

to temper the influence of new stochastic realizations of value. A number of alternative step

size functions have been explored, including constant and decreasing weights (see Powell,

2011). We make a minor contribution to ADP via this component by specification of the
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following hybrid approach. We use a step size that is relatively high and constant while the

value function estimate is moving consistently towards higher or lower values. Once the value

function estimate stabilizes in magnitude7 we switch to a step size function that decreases

exponentially until reaching a lower bound:

(8) δt = max{α exp(−γ(z − zs), 0.05},

where α is the initial and maximum weight given to new information, γ is the rate at which

the weight decays as the number of regression steps increase, z is the regression counter,

and zs is the counter value when the switch to the declining function occurs. This hybrid

approach facilitates an initially high weight on new information for aggressive updating,

with subsequent low weight to facilitate convergence by tempering the effect of stochastic

realizations of value.

In our model for the value function, each state variable enters additively in nonparametric

form. We also include several interaction terms but do so parametrically for two reasons.

First, when variables are interacted (multiplied) this can induce large gaps between data

points which can cause nonparametric estimation to falter. Second, parametric specification

provides coefficient estimates that help in unpacking complex interactions. We might expect

the value of biomass in one stream to depend on the other and therefor include an interaction

between N1 and N2. It is also likely that the value of genetic variance will depend on the

genetic mean and therefor we include interactions between µi and Gi for both streams.

Finally we also include µ2
iGi terms for both streams since the value of the genetic mean is

likely to have an interior peak (i.e. extreme high and low values for the genetic mean are

likely to be disadvantageous). The parametric contribution to the value function is specified

7Specifically, we calculate the following. Define EV̄ z = E[V̄ z(X̂)] as the mean value function given a
probability mass function over states as observed over approximately the last 50 regression blocks . For each
regression block z we calculate the absolute relative deviation in the mean value, abs{

(
EV̄ z − EV̄ z−1

)
/EV̄ z}.

If the value function is no longer consistently iterating towards higher or lower values, we would expect this
measure to be small. We initiate the switch to a decreasing step size when the average of this statistic
over the last 5 regressions is less than φ = 0.001. We consider the average over multiple periods to avoid
idiosyncratically triggering the switch when two regression models in a sequence are similar by chance and
not due to stabilization.
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by: ρ0 + ρ1N1N2 + ρ2µ1G1 + ρ3µ2G2 + ρ4µ
2
1G1 + ρ5µ

2
2G2. Thus the overall value function

model is semi-parametric.

Additional results

Additional value function results

In Figure 1 we present the value function versus the genetic variance (Gi) of stock 1 and 2

(rows), respectively, for a range of mean migration dates (columns). Two key results emerge:

the effect of genetic variance on the value function is small and is least beneficial (even

detrimental) to value when the genetic mean is near its ideal. We exclude the upper range of

Gi in the figure since these levels are exceedingly rare (discussed further below). The effect

on the value function of increasing Gi for either stream from its lower to upper bound in

Figure 1 is no more than 1%. When µi is near its ideal for stream 1 (µ1 = 49.5, row 1,

column 2) the benefit to increasing G1 is at its lowest. For stream 2, when µ2 is near its ideal

(µ2 = 52.7, row 2, column 3) the value actually falls as G2 increases. Overall, we find that

when the genetic mean is best adapted to the conditions faced by a population (stream and

ocean) variance is of little (and possibly negative) value. This latter result is intuitive but the

weak value of variance in general is surprising since in the fisheries management literature

it is conventionally believed to be quite valuable, at least when the population is not well

adapted.

The value function model is nonparametric except for a set of additive, parametric interaction

terms. For additional stability in regression we model a standardized value function where

all variables have been rescaled to have a mean of zero and variance of one. Coefficients and

standard errors are presented in Table 1.
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Figure 1. The value function over the trait variance state (Gi) in stream 1 (top
row) and stream 2 (bottom row) for various levels of the mean trait state (µi,
columns)
Note: Multiple curves within each panel depict the value at various stock levels (Ni), from
lowest (thickest line) to highest (thinnest line). All states that do not vary in a panel are set
to their modal levels.
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Variable Coefficient

(Standard error)

constant 0.00141

(0.00068)

N1N2 -0.047

(0.0012)

µ1G1 -20.5

(0.16)

µ2G2 -12.92

(0.15)

µ2
1G1 10.98

(0.083)

µ2
2G2 6.37

(0.081)

Table 1. Regression results for the constant and parametric interaction terms in
value function model
Note: All coefficients are significantly different from zero (p < 0.01).

Figure 2 shows the contribution to the standardized value function from the interaction

between µ1 and G1 as a function of G1. The figure does not include the direct effect on value

from µ1 and G1. This figure illustrates that, in general, as Gi increases the value falls faster

when µi is near its ideal.

Additional simulation results

Figure 3 shows the temporal mean of levels for each state variable and for profit. Figure

4 shows the relative state variable frequencies from Monte Carlo simulations given no aug-

mentation and the optimal policy. In the final column we see a negative correlation between
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Figure 2. Contribution to standardized V (mean zero, unit variance) from the
interaction between µ1 and G1 as a function of G1.

genetic variance in the two streams because ideal ocean arrival conditions that shift towards

timing that favors one stream reduces drivers for spread in that stream while increasing

spread in the alternative stream. This dynamic is disrupted under optimal augmentation.

Table 2 shows the summary statistics for state variables from the Monte Carlo simulations

under the optimal policy after excluding burn-in periods.

N1 µ1 G1 N2 µ2 G2

Mean 18273 47.8 3.85 14820 48.8 4.48

Mode 24314 47.7 3.75 14744 48.7 4.56

Std dev. 5801 1.1 0.17 3369 1.3 0.24

Table 2. State variable statistics from simulations under the optimal policy after
excluding burn-in periods.
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Figure 3. Mean levels for state variables (for streams 1 and 2) and profit under
optimal (‘opt’) and no (‘none’) augmentation over 3,000 simulation runs across
50 periods
Note: In the final panel, 90% confidence intervals (‘conf’) are shown around mean profit.
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Figure 4. Relative state variable frequencies in simulations under no augmen-
tation (top row) and the optimal policy (bottom row), for stream 1 (horizontal
axis) and stream 2 (vertical axis), for each state type, (N,µ,G)
Note: Results reflect 3,000 simulations, starting from randomly selected loci in the state
space, of 50 periods each, with the initial 30 periods excluded as burn-in periods. Continuous
state variable values were binned to the nearest node for the plot.
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