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Abstract

Standard dynamic resource optimization approaches, such as value function iteration, are challenged

by problems involving complex uncertainty and a large state space. We extend a solution technique

to address these limitations called approximate dynamic programming (ADP). ADP recently emerged

in the macroeconomics literature and is novel to bioeconomics. We demonstrate ADP in solving a

simple fishery management model under uncertainty to show: the mechanics of ADP in simplest form;

the accuracy of ADP; the value of a nonparametric extension; and readily adaptable, non-specialized

code. We then demonstrate ADP’s capacity to handle rich bioeconomic problems by solving the fishery

management problem subject to four autocorrelated shock processes (governing economic returns and

biological dynamics) which entails four sources of stochasticity and five continuous state variables. We

find that accounting for multiple autocorrelation has important impacts on harvest policy and generates

gains that depend crucially on the structure of harvest cost.
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Introduction

Resource management models usually require the marriage of social-environmental modeling and optimiza-

tion techniques. For example, a standard analysis of efficient fishery management might involve solving an

integrated model of biology and user behavior using dynamic programming tools like value function itera-

tion (VFI). To date, these tools have generated useful intuition by providing reliable solutions to relatively

simple problems. However, such standard approaches are not well-positioned to address evolving future

needs. The frontier of natural resource management is moving towards an ever richer representation of

social-environmental systems, involving an expanding appetite for incorporating more states, increasingly

evoking the curse of dimensionality. Furthermore, capacity to address uncertainty is central (LaRiviere et al.

2017). In a recent review of dynamic analysis in fisheries, Clark and Munro (2017) argue that we are forced to

face “the question of how best to mitigate the consequences of uncertainty” given the centrality of uncertain

returns to investment in resource management.

In this article we illustrate and extend a Monte Carlo simulation-based stochastic optimization approach

with very limited previous application to natural resource management known as “approximate dynamic

programming” (ADP). Key strengths of ADP are (1) its facility with high-dimension problems, and (2) its

use of simulation to capture complex uncertainty in biophysical and economics dynamics. ADP first appeared

in the operations research and engineering literatures (Powell 2007; Bertsekas 2011) and is also referred to as

reinforcement learning (Sutton and Barto 1998) or neuro-dynamic programming. Judd, Maliar, and Maliar

(2011), followed by Maliar and Maliar (2013) and Hull (2015), were the first to develop full applications

of this method in the economics literature, specifically to solve high-dimension macroeconomic problems.

In short, ADP involves iterating between two steps—in the first step Monte Carlo simulations are run to

generate samples, and in the second stage these samples are used to update estimates of a value function or

policy function.

Existing approaches for using simulation in bioeconomic optimization have been limited. Taleghan et

al. (2015) and Hall et al. (2018) use simulation to construct an approximation of the Markov transition

matrix before solving with standard VFI.1 This approach facilitates complex uncertainty processes for which

“exact inference is intractable” (Taleghan et al. 2015). Alternatively, Moxnes (2003) begins with specifying

a functional form for the policy (defined over the state space) that is conditioned on a policy parameter

vector. Next, multiple paths for stochastic shocks are produced, each over the same finite-horizon. Finally,

nonlinear optimization is used to identify the policy parameter vector that maximizes average welfare across

the set of simulations.2 While both of these approaches expand the frontier of bioeconomic optimization,
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they have limitations. First, they introduce approximation error through an assumed policy function form

(Moxnes 2003) or an approximated Markov transition matrix (Taleghan et al. 2015; Hall et al. 2018). Second,

both approaches struggle with scale as additional dimensions in state space are considered. This is due to

the standard dimensionality limits of VFI and further in the approach of Moxnes (2003) via simplification

required in the policy function.

In natural resource management, the closest existing work to what we present here is Fonnesbeck (2005)

who solves a bioeconomic optimization problem using a reinforcement learning approach based on Monte

Carlo simulation.3 Fonnesbeck is similarly motivated by the need to handle large-scale resource management

problems. The application is innovative but does not progress beyond a two-state variable problem (also

solvable using dynamic programming) and achieves only a “coarse approximation of the true optimal policy”.4

ADP allows for the application of dynamic programming to particularly “large and complex problems”,

providing tractability despite high dimensionality (Bertsekas 2011). Demand on computer memory—a com-

mon bottleneck in numerical optimization—is limited, since the core of the procedure is forward simulation

rather than manipulation of large arrays (as in VFI). In richer problems, transition dynamics can be so

complex that inference is intractable, leaving simulation the only practical approach for treating dynamics

(e.g., as Taleghan et al. (2015) show in a bioeconomic model of invasive riverine tamarisk control). Instead

of handling stochasticity through numerical integration or the construction of potentially large (state and

action-dependent) Markov transition matrices, ADP uses Monte Carlo simulations to inform the expectation.

This minimizes the complexity and potential inaccuracies these elements can generate.

ADP is of particular value in marine resource management problems for two reasons: the need to address

complex uncertainty and facilitate ecosystem-based fisheries management (EBFM). In their recent discus-

sion of dynamic analysis in fisheries, Clark and Munro (2017) highlight the “increasingly popular ecosystem

approach to fisheries management” where decision makers manage a portfolio of assets; i.e., multiple impor-

tant stocks. A special committee of the American Fisheries Society, providing input into the amendment

process for the Magnuson–Stevens Fishery Conservation and Management Act in the US, recently reiterated

the importance of explicitly “account(ing) for uncertainty and change in the climate and ecosystem” and

of implementing EBFM—a “holistic approach” focusing on “multiple species” (Miller et al. 2018). Facili-

tating these marine resource management demands requires expanding the standard toolkit with emerging

techniques like ADP.

The first key objective of this article is to demonstrate, in simplest form, the essential elements of ADP
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for solving environmental management problems. To do so we use ADP to solve a basic resource management

model, specifically the canonical model of fishery management under uncertainty developed by Reed (1979).

The accompanying computer code we provide for this simple model is accessible and readily adaptable to

other resource management problems. We provide Matlab code for replicating the analyses in this article at

https://github.com/mspringborn/ADP_fishery_autocorrelation. This intentionally simple first model

allows us to also solve the problem with a standard VFI approach to verify ADP’s accuracy and reliability.

Dynamic programming typically requires representation of a value function at its core. Contributing

more broadly to the ADP literature, we show the utility of a nonparametric representation of the value

function—e.g., using Gaussian process regression—to address weaknesses of existing approaches. Using the

simple Reed model, we compare the performance of parametric methods (common in the nascent ADP

literature) with our nonparametric approach. While parametric methods are subject to substantial error,

the nonparametric approach can accurately identify optimal policies and value functions. To our knowledge,

this work is first to use nonparametric regression to improve approximation of the value function in ADP.

The second key objective of this article is to generate new insights in applying ADP to a pressing

problem with complex uncertainty and a large state space. Since Reed’s (1979) analysis of a single source

of uncertainty in stock dynamics, a growing literature has examined various kinds of uncertainty. This

includes uncertain stock levels (Clark and Kirkwood 1986; Roughgarden and Smith 1996; Sethi et al. 2005),

uncertain harvest implementation (Roughgarden and Smith 1996; Sethi et al. 2005), uncertainty and spatial

interactions (Costello and Polasky 2008), uncertainty and capital adjustment (Singh, Weninger, and Doyle

2006), and the effect of attitudes toward risk (Lewis 1981; Kapaun and Quaas 2013). Many studies involve

random perturbations to the bioeconomic model (Walters and Hilborn 1978; Nøstbakken and Conrad 2007).

Nøstbakken (2006) observes that such studies usually focus on a single source of uncertainty. Some exceptions

that consider two or three sources include Hanson and Ryan (1998), Sethi et al. (2005), and Nøstbakken

(2006).5

Another typical simplification is to assume that shock levels are independent and identically distributed

(i.i.d.) over time. A handful of exceptions allow shock levels to evolve in an autocorrelated fashion over time

(Parma 1990; Walters and Parma 1996; Spencer 1997; Nøstbakken 2006). However, treatment is limited to

a single autocorrelated variable. Limitations to the number of sources of uncertainty are driven by the fact

that “the computational challenges are significant” (Rodriguez et al. 2011). On top of this, accounting for

autocorrelation in shock levels requires an additional state variable for each stochastic parameter. To show

ADP’s facility with such complexity, in the latter half of the article we extend the model to a problem with
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four autocorrelated shock processes, which, combined with the stock level, requires five continuous state

variables.

Rodriguez et al. (2011) argue that accounting for fluctuations in multiple bioeconomic parameters “that

arise in any real-world management situation is important.” Nøstbakken and Conrad (2007) note that

uncertainty can enter in many ways, including biologically—due to stochastic stock-growth dynamics—as

well as economically, through fluctuating prices and costs. Earlier work addressing parameter variation has

mainly focused on one type or the other. We consider two sources of biological uncertainty and two sources

of economic uncertainty, operating simultaneously.

Autocorrelation in stochastic parameters is a common reality in bioeconomic settings. Parma (1990)

and McGough, Plantinga, and Costello (2009) observe that autocorrelated productivity shocks are apparent

in many fisheries, belying the typical assumption of a stationary stock-recruitment relationship (i.e., with

i.i.d. shock levels). Economic parameters, such as price and harvest cost are also likely autocorrelated due

to persistent trends in demand (due to evolving consumer tastes, dynamics of substitute goods, etc.) and

supply (due to evolving costs in the labor market and input costs like fuel). Nøstbakken (2008) and Deroba

and Bence (2008) argue that research is needed to address the implications of autocorrelation for optimal

management.

Autocorrelated shock levels can have important effects on optimal management. For example, autocor-

relation associated with biological dynamics (e.g., predatory pressure, general mortality, and growth) affects

optimal policy (Parma 1990; Spencer 1997; Singh, Weninger, and Doyle 2006) and static policies are less effi-

cient (Walters and Parma 1996). Parma (1990) finds that “escapements are raised when favorable conditions

are anticipated and they are lowered when poor environments are expected” and that “feedback responses

reinforce recruitment fluctuations and lead to a sequence of boom and bust periods in the fishery.” In one of

the few studies with autocorrelation on the economic side of the model, Nøstbakken (2006) conducted a real

options analysis of a switching policy (from no harvest to a maximum harvest level) under prices that follow

geometric Brownian motion (and with uncertainty in stock growth). While she finds that pulse fishing is

optimal, she observes that the maximum harvest rate of the fishing fleet dominates the switching decision,

rather than price volatility.

Although ignoring autocorrelation when determining optimal policy can lead to inaccurate results, bioe-

conomic models typically ignore it or consider only a single source. This is likely due, at least in part, to the

computational challenge of solving such problems with traditional dynamic optimization methods, since each
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autocorrelated parameter carries an additional state variable and source of stochasticity. Here we show that

ADP handles integrating over four sources of stochasticity and five continuous state variables with relative

ease.

Relative to naively treating shocks to parameters as i.i.d., we find that accounting for autocorrelation

leads to large differences in response to observed shocks. We also find that optimal policy is quite sensitive to

shocks to stock-recruitment function; thus, previous findings that growth uncertainty has a negligible effect

on optimal policy do not hold in general (Sethi et al. 2005). While economic shocks are important, they are

typically dominated by biological shocks. Additional rents from autocorrelation-savvy management strongly

depend on harvest cost structure. Finally, accounting for autocorrelation is important for avoiding fishery

closures; the savvy manager substantially reduces the rate of closures in all cases.

Methods

The Bioeconomic Model

To illustrate the ADP approach, we replicate the standard stochastic dynamic fishery model originated by

Reed (1979). The problem entails a sole owner selecting harvest to maximize the expected present value of

profits subject to specified growth dynamics. In each period, t, the manager observes the fish stock available

for harvest, xt, and chooses the level of harvest, ht. The escapement (st = xt − ht) grows according to a

stock-recruitment equation, G(st). After growth, the stock is subjected to a random, multiplicative growth

shock, z. While the standard Reed model accounts for the shock at the end of the discrete period, to

facilitate our solution approach (as described below) we index the shock as accruing at the beginning of the

time period. Stochastic stock dynamics are thus given by:

xt+1 = zt+1G(st) = zt+1G(xt − ht). (1)

The objective is to maximize the present value of long-run profits, where the profit function is given by

π(ht|xt), and β is the discount factor. Profit is assumed to follow:

π(ht|xt) = p · ht −
∫ xt

xt−ht

(
c

Xt

)
dXt = p · ht − c · ln

(
xt

xt − ht

)
, (2)

where p is the price per unit of harvest, and c is a constant (Reed 1979).6 We generally follow Sethi et al.

(2005) in our specification of bioeconomic parameters as summarized in the appendix.7
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We consider a logistic stock-recruitment equation to model population growth:

nt+1 = Gl(st) = st

[
1 +R ·

(
1− st

K

)]
, (3)

where R is the growth rate, and K is the carrying capacity. The initial stock (pre-harvest) in period t + 1

is nt+1, which is equivalent to the post-growth population from period t. The standard problem specified

here with logistic growth is known to lead to a well-behaved value function. To provide a stronger challenge,

we also consider an alternative growth model that generates a convex-concave value function. Modifying

the logistic stock-recruitment relationship in equation 3 following Conrad (2010, 77), we add the following

additional form exhibiting critical depensation:

nt+1 = Gc(st) = st

[
1 +R ·

(
1− st

K

)(
st
K0

− 1

)]
, (4)

where R is the growth rate, K is the carrying capacity, and K0 is the “critical population level.” Because

nt+1 < st when st ∈ (0,K0), in a deterministic model K0 is also the “minimum viable population;” i.e., the

population size below which extinction is inevitable. However in our model, it is possible for growth shocks

to move the population in and out of this negative growth stock range. In contrast to Gl(st), Gc(st) is not

consistently concave—the critical depensation leads to a convex function when st ∈ (0, (K +K0)/3). Bulte

and Kooten (2001, 90) motivate the use of this form arguing that population dynamics are “more complex

than usually modeled by economists” and that “it is necessary to expand the ecological underpinnings” of

bioeconomic models.

A common form of the Bellman equation for this problem is:

J(xt) = max
ht

{π(ht|xt) + βEz [J(xt+1)]} (5)

s.t. xt+1 = zt+1G(xt − ht),

ht ≤ xt.

However, by shifting the value function argument to be the pre-shock state (nt), the Bellman can be re-
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expressed as:

V (nt) = Ez

[
max
ht

{π(ht|nt, zt) + βV (nt+1)}
]
, (6)

s.t. nt+1 = G(ztnt − ht),

ht ≤ ztnt.

This expression results from shifting the accounting of events back by one operation such that the first step is

the realization of the shock. This moves the expectations operator outside of the maximization calculation.

This way of framing the decision problem is sometimes referred to as using the “post-decision state” (Judd

1998). Here, the approach simply involves positioning the start of a period such that the stochastic event

occurs first. This structure allows the maximization problem (conditional on the shock) to be deterministic.

Furthermore, this structure allows avoidance of numerical integration to calculate the expectation directly

since the Monte Carlo simulations used in ADP serve to capture uncertainty (Hull 2015). These features can

significantly simplify solving for the value function as exploited in the solution technique described next.

Solution Method

As an alternative to standard iterative approaches (e.g., VFI) for solving dynamic stochastic models, ADP can

be characterized broadly as a stochastic simulation method. Other numerical alternatives include projection

methods and perturbation methods. Judd, Maliar, and Maliar (2011) provide a useful overview of the relative

advantages and disadvantages across these three classes. Projection methods involve approximating solutions

over a given domain using deterministic integration. They are quick and accurate, but slow dramatically

when the number of state variables expands. Perturbation methods identify solutions locally using Taylor

expansions of optimality conditions. They can handle high-dimensional applications, but accuracy is limited.

Stochastic simulation methods, in general, can handle high-dimensional applications. However, they can

be less accurate than projection methods and are subject to potential numerical instability. Judd, Maliar,

and Maliar (2011) developed a generalized stochastic simulation algorithm aimed to be accurate, stable,

and able to handle high-dimensional applications. They achieve this primarily by normalizing variables,

implementing parametric regression tools for ill-conditioned problems (e.g., Tikhonov regularization), and

choosing the integration method carefully. Below we present the ADP algorithm for solving the standard

problem from the bioeconomic model section, above, to demonstrate its accuracy relative to established

methods, develop a nonparametric extension, and convey the intuition and mechanics of the approach in a

simple, yet meaningful, setting.
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Our ADP algorithm is informed by precursors from Judd, Maliar, and Maliar (2011); Maliar and Maliar

(2013); and Hull (2015). The intuition is as follows. We start with a rough guess of the value function.

Conditional on this guess, we generate a set of observed draws from the value function, constructed from a

draw of the stochastic shock and the resulting optimal management choice. We next use regression to fold

the set of value function observations into an updated value function estimate. In our preferred approach we

implement this step using nonparametric methods (Gaussian process regression), which is stable and does

not impose arbitrary structure on the value function.8 This process is repeated until the value function

converges.

Next, we outline the individual steps of ADP in compact fashion before describing key components in

greater detail further below. The first two steps involve setup and initialization—the dynamic core of the

algorithm is executed in step 3 and depicted, in part, in figure 1.

An approximate dynamic programming algorithm:

1. Set ADP parameters and functional forms.

(a) Choose the time horizon, T , for each simulation chain.

(b) Choose the number of simulations, m̄, to complete before executing each regression step.

(c) Choose a functional form that will determine the step size (or smoothing parameter), δt ∈ [0, 1].

2. Initialize the value function and the state space.

(a) Select an initial guess for the value function over the domain of the states, V̄ k=0(n).

(b) Define a discrete grid over the state space, n̂.

(c) Set the regression counter to k = 1.

3. For each simulation iteration m = 1, ..., m̄ (generating observations to use in regression k), execute the

following steps:

(a) Randomly select an initial state, nm
t=1.

9

(b) For each period t = 1, ..., T within simulation m, execute the following steps:

i. Randomly select the shock, zmt .

ii. Choose h∗ to maximize the value:

ṽmt (nm
t ) = max

ht

{
π(ht|nm

t , zmt ) + βV̄ k−1(nm
t+1)

}
.

iii. Calculate the step size, δt ∈ [0, 1].

iv. Compute the expectation with a linear combination of the newly obtained optimized value
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and the previously approximated value at state nm
t :

Ṽ m
t (nm

t ) = δtṽ
m
t (nm

t ) + (1− δt)V̄
k−1(nm

t ).

v. Compute the next period state conditional on taking the optimal action: nm
t+1 = G(nm

t zmt −

h∗).

(c) After completing m̄ simulations of T periods each, there are m̄∗T observations of the state visited

(n) and the associated updated value estimate (Ṽ). Regress Ṽ on n.10,11 Let V̄ k represent the

fitted model from the regression; i.e., the updated value function estimate.

(d) Check for convergence. Calculate the maximum deviation between the current and former value

function estimate across the set n̂: ∆k = max{V̄ k(n̂)− V̄ k−1(n̂)}. If the average of ∆k over the

last k̄ regressions is less than the stopping tolerance, the convergence criterion is met and the

program can be terminated.12 Otherwise, increment the regression counter by one (k = k + 1)

and repeat step 3.

After convergence, the optimal policy function, h(nt), is computed using the final estimate of the value

function above, V̄ = V̄ k.

[Figure 1 about here.]

Parameter values and further details of the ADP algorithm are presented in the appendix and online-

only appendix. Selecting the number of periods per simulation, T , is chosen to balance a tradeoff. On the

one hand we want to ensure that the implications of starting at a given state are “felt;” for example the

possibility of the population increasing or decreasing. On the other hand, excessive representation of the

steady-state region—to which simulation chains congregate given sufficient time—does not provide much

additional information. The number of simulation chains, m̄, completed between each regression step k is

selected to balance another tradeoff: increasing m̄ allows for more extensive representation of chains initiated

across the state space, but this delays incorporation of new information in the regression step (3c) slowing

convergence.

The step size, δt, specifies the relative weighting of new versus existing information as implemented in step

3(b)iv. Since the initial guess is likely to be poor, a larger weight on new information is useful at the outset,

and speedy transition to the neighborhood of the solution is desirable. However, once the value function

estimate has transitioned to a stable neighborhood, a lower weight is desirable to temper the influence of
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new stochastic realizations of value (as we seek to converge on the expected value function). Application

of the step size is alternatively called smoothing, a linear filter or stochastic approximation. It is required

solely due to the randomness in observed values of ṽmt and facilitates computation of the expectation (Powell

2011).

A number of alternative step size functions have been explored in the literature, including constant and

decreasing weights (Powell 2011). Hull (2015) states that a desirable step size formulation is high during

early iterations but falls quickly as observations accrue and subsequently become less informative. We use

a step size that is initially high and constant, while the value function estimate is moving away from the

initial guess and consistently towards higher or lower values. Once the value function estimate is no longer

consistently moving in one direction, we switch to a step size function that decreases exponentially until

reaching a lower bound (as detailed in the online-only appendix).

The approach outlined above facilitates continuous state, shock, and action variables with relative ease.

While we define a discretization of the state space (n̂), this vector only serves as a convenience for selecting

starting points for each simulation chain and a set of nodes at which we check for convergence in the value

function. The state is allowed to vary continuously in the Monte Carlo simulation step.

In figure 2 we present our ADP “dashboard” to provide a snapshot of the algorithm in action after

a limited number of regression steps (k = 96). Subplot 2A illustrates the last block of simulated value

function draws (n and Ṽ) and the model generated by nonparametric regression (V̄ k), described further in

the next section. Subplot 2B shows the residuals from the regression which can illustrate if and when bias

is introduced into the value function model (discussed further below). Subplot 2C shows the path of the

convergence statistic. Instead of using the maximum absolute deviation from the a single regression update

(∆k)—which is highly variable and could result in a false indication of convergence—we use a rolling average

over the last 10 updates. Subplot 2D shows the current estimate of the policy function (in escapement

units) given the post-shock level of the stock (n · z). Subplot 2E shows the step size, loosely the weight on

new information. We maintain a high, constant step size until the threshold for switching to the declining

formulation is reached, as depicted in 2F (at k = 80 in this example). For the step size statistic, we also use

a rolling average to ensure the switch is not driven prematurely by a stochastic draw.

[Figure 2 about here.]
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Flexible Representation of the Value Function

We also aim to advance methodology for a historically frustrating component of dynamic optimization:

representation of the value function. In step 2 of the algorithm above, the value function must be captured

via a lookup table, parametric model, or nonparametric model (Powell 2011, 233). This choice is tied to the

regression procedure used in step 3c. The regression step exploits the observed information in n and Ṽ to

update the value of states surrounding the observations.

Existing applications have used either a lookup table (e.g., Hull 2015) or a parametric model (e.g., Judd,

Maliar, and Maliar 2011; Maliar and Maliar 2013). A lookup table for the value function defined at discrete

values is simple: no particular structure is imposed on the value over the state variables. However this

approach generates discretization bias, especially as dimensions increase and grids become more coarse to

ensure tractability. In contrast, parametric (e.g. polynomial) models exploit structure in the value over

the state variables (Powell 2011, 304). The advantage is that fewer points are needed and optimization

is accelerated by the increased smoothness (Judd 1996). However, as Powell (2011, 316) summarizes, the

promise of parametric models is countered by a key handicap, “they are only effective if you can design an

effective parametric model, and this remains a frustrating art.”13

To address the weaknesses of both lookup tables and parametric approximations, we extend the ADP

toolbox to implement a nonparametric representation of the value function. This generates a continuous

function that allows for very flexible behavior without the need to choose a specific parametric structure.

Powell (2011, 316) observes that nonparametric methods hold “tremendous” promise but face substantial

challenges. We implement a nonparametric approach that uses data from Monte Carlo simulations to estab-

lish both the structure and levels of the function. Specifically, we use Matlab’s Gaussian process regression

routine (fitrgp), which flexibly captures both the direct contribution of variables and interactions.

Results

We solve the management problem specified in equation 6 using ADP with a nonparametric value function

and various parametric alternatives. As a benchmark, we also solve the problem with the standard VFI

approach (Judd 1998). This allows us to show that nonparametric ADP reliably and accurately identifies

optimal solutions, while parametric approaches are problematic.

Before presenting ADP and VFI solutions below, we first illustrate the problem created by parametric

functional form approaches to the ADP value function. In figure 3 we present a snapshot of the key regression
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step in the middle of the solution process (i.e., given some arbitrary number of regression steps already

completed but well before convergence). The top row illustrates the last block of simulated value function

draws (n and Ṽ) and the model generated by the regression. The first two columns illustrate outcomes

under a parametric model (quadratic or quartic) while the final column follows from the nonparametric

model. Visually we see that the parametric models admit shapes known to be inappropriate for this model.

The value function should be concave and non-decreasing. Both parametric models are decreasing over some

range shown in the figure. The quartic model also results in undesirable convexity to approach the expected

shape. A cubic model (not presented here) resulted in similar problems. While these polynomials cannot

be non-decreasing and concave over the entire positive domain, to be effective approximating functions they

would need to satisfy these properties over the relevant domain plotted here.

Such shape property violations are known to lead to unstable fluctuations and substantial errors in

standard VFI applications (Cai et al. 2017). The residuals of these regressions show the bias introduced

by the parametric models: residuals trend positive and negative in a systematic fashion.14 Essentially the

“data” from the simulated observations is unable to “pull” the function into a more accurate shape given

the parametric form. In contrast, the nonparametic value function meets shape expectations, and residuals

are centered around zero. As expected, residuals are increasing in stock (n) since stochasticity in the model

enters as a multiplicative shock to the population. Observations in figure 3 are sparse at larger stock levels

and sometimes concentrated near a particular midpoint. This is expected given the constant escapement

policy that emerges (inclusive of post-harvest stock growth) as seen in figure 2D.

[Figure 3 about here.]

Value and Policy Function Solutions

Next we present solution results for the base growth model without the convexity introduced by critical

depensation. In figure 4 we show the value functions (left subplot) and policy functions (right subplot)

that result from the VFI solution approach and from ADP under the nonparametric and three parametric

models. We identify the VFI solution using a lookup table representation of the value function (treating n

as a continuous variable using piecewise cubic interpolation). While this approach can be burdensome in

terms of computer memory use for multi-state problems, the single state considered here is easily captured.

In our application, VFI generates the benchmark solution as a reference to assess the performance of the

other approaches.
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In figure 4 we see that our nonparametric ADP approach is the only ADP alternative to successfully

identify the optimal policy and value function. The VFI and nonparametric ADP results are visually indis-

tinguishable. The parametric value functions—as foreshadowed in figure 3—take unreasonable forms and

the escapement policy is biased. Parallel results for the critical depensation growth model—in online-only

appendix figure 1—show that other parametric ADP approaches fail, while the nonparametric ADP approach

accurately identifies the convex-concave form of the value function that emerges under this growth function.

This value function is convex for low stock levels and eventually concave since the growth function is also

convex-concave as governed by the critical population level (K0 = 25).

[Figure 4 about here.]

A key metric of performance is the policy function error relative to the benchmark VFI (lookup table) ap-

proach given by a constant escapement level. Under both growth models, the nonparametric ADP approach

is quite accurate, with an error of 0.2 to 0.4%. In contrast, parametric approaches show error between 1.4

to 67%. The cubic ADP approach fails to capture the true shape of the value function, but (presumably by

chance) shows here the least amount of error. However, the error is not consistently low, ranging from 1.4

to 20% depending on the growth model. The most flexible function (quartic) performs worst, with error of

16 to 67%. The error generally increases with the order of the parametric model, albeit with an exception

(i.e., cubic value function for the critical depensation growth model). We also consider the value function

error, defined as the absolute difference between the left and right-hand sides of equation 6, conditional on

the optimal policy. For the ADP solution, checking values of the population that really matter—from the

level resulting from the optimal policy down to half that level—we find that the value function error is quite

small, 0.01-0.06% (both growth models). To check for sensitivity of these results to parameters, we con-

sider alternative levels of the cost and carrying capacity parameters (c,K) that differ by +/−10%. Results

were qualitatively similar: negligible policy and value function error under the nonparametric approach and

substantial error from the parametric alternatives.

For the single-state benchmark model, solution run times are slower for ADP.15 The VFI run time (for

both growth models) is 54 seconds. ADP with nonparametric regression takes an average of five minutes

and 23 seconds (critical depensation) to six minutes (base growth model). Thus, the core motivation for

using ADP is not speed; rather to enable solutions for models—as developed in the next section—with high

dimensionality and/or complex uncertainty that makes VFI unwieldy.
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Accounting for Autocorrelation in Multiple Shock Levels: Several Continuous

States and Sources of Uncertainty

To demonstrate the capacity of ADP to handle several continuous state variables and several sources of

uncertainty, we extend the model to incorporate multiple autocorrelated shocks to parameters. In the

biological model, in lieu of the single multiplicative growth shock (zt · nt), we embed shocks to carrying

capacity (zKt ) and to the growth rate (zRt ) directly in the stock-recruitment function:16

xt = Gl,z(z
K
t , zRt , nt) = nt

[
1 + zRt r ·

(
1− nt

zKt K

)]
. (7)

For the critical depensation model we consider shocks to the carrying capacity and the critical population

level (zK0
t ):

xt = Gc,z(z
K
t , zK0

t , nt) = nt

[
1 +R ·

(
1− nt

zKt K

)(
nt

zK0
t K0

− 1

)]
. (8)

We also incorporate profit shocks to price (zpt ) and cost (zct ):

π(zpt , z
c
t , ht|xt) = zpt p · ht − zct c · ln

(
xt

xt − ht

)
. (9)

Equation 9 maintains the assumption of density-dependent harvest cost. We also consider density-independent

harvest costs given by zct c · ht. Results discussed below show that the cost function form holds a strong in-

fluence on the welfare returns to autocorrelation-savvy management.

In the three equations above we assume that the shock levels, zit, can be autocorrelated. We generally

follow the autocorrelated, stochastic process specification of Spencer (1997), where the shock levels evolve

according to:

zit+1 = ρ · zit + (1− ρ) + ϵit, (10)

where ρ is the first-order autocorrelation coefficient and ϵit is a mean-zero normal random variable. The

long-run expected value of zit is 1, and we restrict the range to zit ∈ [0.5, 1.5]. When ρ = 0 there is no serial

correlation—the process is pure white noise. Below we consider cases without and with autocorrelation:

ρ ∈ {0, .95}.17 The standard error of ϵit is scaled so that the variance of each zit remains the same (0.1)

regardless of the value of ρ. Relative to the single uncorrelated shock model first presented, the zit terms are

now recast as shock levels that incorporate the cumulative effect of stochastic innovations, ϵiw, for w ≤ t.

Let zt represent a vector of the four shock levels impacting biology and profit.
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When there is no autocorrelation, the value function defined in equation 6 is still a function of only one

state, V (nt). However, under autocorrelation, the value function becomes dependent on all four of the shock

levels, V (nt, zt). In this five-state variable case, the same solution algorithm is applied, albeit with each step

previously applied to the scalar stock level (nt), extended to the vector (nt, zt), and with dynamics for zt

given by equation 10.

Results Under Autocorrelation

We focus on how the extension to a five-state, autocorrelated shock model affects optimal management,

expected welfare, and fishery closures. We solve for the optimal escapement policies when autocorrelation

is and is not present. We then assess the performance of these two policies over simulations in which

shocks are indeed autocorrelated. We use 5,000 simulations of 70 periods in which the first 20 periods are

discarded for burn-in. Simulations are started at uniformly random points in the state space. We consider

unit harvest cost functions that are density dependent and density independent. For simplicity, we refer to

these two cases as “dependent” and “independent”, respectively. We also consider both the base growth and

critical depensation growth models. Overall, against a backdrop of autocorrelation, we are interested in the

performance of the autocorrelation-savvy manager (relative to an autocorrelation-naive manager) and how

this depends on the growth model and cost function. We focus on base growth model (logistic) results, below,

and present critical depensation model results in the online-only appendix to simplify the presentation of

cases. Overall, outcomes under these alternative growth models are qualitatively similar.

Previewing welfare results, in the dependent case we find that the expected profit gain from autocorrelation-

savvy management (over autocorrelation-naive) is either modest or almost zero: the mean profit (across sim-

ulations and over time) increased by 0.2%. However, we find that the expected profit gain in the independent

case is substantial at 10%. We also find that the autocorrelation-savvy manager does a much better job

of avoiding fishery closure, again especially in the independent case. Below we mainly present results for

this independent case (accept where noted). Additional parallel results for the dependent case are in the

online-only appendix. At the end of this section we discuss, in detail, the welfare results introduced, above,

and provide intuition for the impact of the cost function, which drives the biggest differences.

For all model variations we consider—cost and growth functions and autocorrelation levels—the constant

escapement policy found by Reed (1979) and others holds: optimal escapement is constant over stock levels

unless the stock falls below the constant escapement level, at which point optimal escapement is 100%.18

Thus, the optimal policy for each scenario can be summarized by the constant escapement level. In figure 5

we summarize optimal constant escapement levels with autocorrelation (ρ = 0.95) and without (ρ = 0) for a
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set of shock level cases. We consider cases where shock levels are at their mean (“all zi = 1”) and in which

various shock levels are at their minimum (“min zi”) or maximum (“max zi”), while remaining shocks are at

their mean. Finally, we depict minimum and maximum escapement (“min esc,” “max esc”) cases in which

all shock levels are at an extreme (high or low) level. (See online-only appendix figure 2 for the dependent

case.)

Under no autocorrelation (dark bars in figure 5) the optimal action depends only on the stock (x) and

economic shock levels. Here the policy is not a function of biological shocks—they are already incorporated

into x and provide no information about next period’s state. Under no autocorrelation, current shock levels

do not inform future shock levels and, therefore, do not affect expected future values. In contrast, under

autocorrelation (light bars) all current shock levels inform future shock levels and, thus, have an effect on

value and optimal management.

As expected, escapement is high when shock levels result in a low price and high harvest cost (with and

without autocorrelation). Escapement is also relatively high when the carrying capacity is high and the

growth rate low. Overall, shock levels drive wide variation in optimal escapement. When all shock levels are

considered together the potential for variation is greater in the autocorrelation case, which is not surprising

since policy is now sensitive to economic and biological shock levels: in the autocorrelation case, optimal

escapement can vary by more than a factor of five depending on the shock level (e.g., from under 20 to

over 125 at high stock levels). But when we consider the response to a high individual shock level (with

other shock levels at their mean), variation in escapement is lower under autocorrelation. This is because

under autocorrelation the decision maker expects the condition to persist, while under no autocorrelation

the condition is transient. For example, a high price will be immediately exploited under no autocorrelation

(since the expected price in future periods is the mean), while under autocorrelation the decision maker

expects prices to remain high (and exploitable) over multiple periods.

Comparing the relative impact of various shock levels, optimal escapement is more sensitive to price

shock levels (zp) than cost (zc); in part because shocks enter multiplicatively against a price parameter that

is larger than the cost parameter (p > c). Policy is also much more sensitive to the shock level for carrying

capacity (zK) than for growth rate (zR). This might be expected given growth rate affects only new recruits,

while carrying capacity can affect both (when stock exceeds the carrying capacity).

[Figure 5 about here.]
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In figure 6, given autocorrelation we show how optimal escapement share varies (shading intensity) with

biological shock levels (axes) for various stocks (panels). As noted above, optimal escapement is higher given

high carrying capacity (zK) and low growth rate (zR). Accounting for multiple sources of autocorrelated

uncertainty here provides a more nuanced result than obtained by Parma (1990). In her analysis, Parma

finds that “escapements are raised when favorable conditions are anticipated and they are lowered when

poor environments are expected.” We find a similar result with respect to carrying capacity. But in the case

of growth rate, escapement is higher under unfavorable conditions.

To illustrate the potential policy error from ignoring autocorrelation, we show the isocline where the

(fixed) autocorrelation-naive policy (A∗
ρ=0) is equal to the autocorrelation-savvy policy. A∗

ρ=0 is reported in

the subtitle to each subplot. The difference in optimal escapement share is small when the shock levels are

near their mean (zi = 1) and large when zK is high and zR is low (or vice versa). Thus, we expect gains for

an autocorrelation-savvy manager (relative to naive) to be high when zK and zR diverge strongly from each

other or from their mean.

[Figure 6 about here.]

In figure 7 we show how optimal escapement share for the autocorrelation-savvy manager varies with

economic shock levels (axes) for various stocks (panels). Generally (as noted above) escapement share

increases as economic conditions are less favorable, as zp falls and zc increases. Considering a harvest

optimization problem with (uncorrelated) price and stock uncertainty, Hanson and Ryan (1998) find that

price volatility has only a modest impact on the optimal policy. In contrast, we find that price fluctuations

have a large impact on optimal escapement under no autocorrelation (figure 5, ρ = 0). Under autocorrelation

(ρ = 0.95), the role of zp attenuates but is still quite substantial especially for low prices. These observations

also hold for the dependent case (online-only appendix figure 2).

[Figure 7 about here.]

Results in figures 6 and 7 show that the optimal policy response to zK depends on zR, and similarly the

optimal response to zp depends on zc. This also holds for the dependent case (see the online-only appendix).

It also holds across each shock level pair, such as zK and zp (not shown). Thus if autocorrelation is present

in more than one parameter shock level (as modeled here), then all should be accounted for since the optimal

response to one shock level depends on the others.
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In table 1 we report summary statistics from 5,000 Monte Carlo simulations of 70 periods where the first

20 periods are discarded for burn-in. In each simulation, paths for each shock level, zit, are produced based on

a uniformly random starting point and assuming autocorrelation (ρ = 0.95). Then the autocorrelation-savvy

(ρ = 0.95) and autocorrelation-naive (ρ = 0) policies are applied separately, but in parallel, against the same

series of starting points and shock levels. We examine several outcomes: escapement share, stock, profit,

harvest, and closure of the fishery. We consider both density-independent and density-dependent harvest

costs. We first take the mean (over the final 50 periods) for each simulation and then, across simulations,

report the mean and 90% confidence interval (in parentheses). We also show the percentage difference in

the mean statistic.

[Table 1 about here.]

On average, the escapement share and stock decrease, while profit and harvest increase under the

autocorrelation-savvy manager. This holds for both cost functions (and both growth models—see online-only

appendix table 1). In figure 8 we show histograms of these outcomes from table 1 for the independent case,

illustrating the spread of mean simulated outcomes. Each “observation” in the set summarized in a his-

togram is the mean from a given simulation. Dark shading represents outcomes for the autocorrelation-naive

manager (ρ = 0), and white represents outcomes for the autocorrelation-savvy manager (ρ = 0.95). Muted

shading appears when they overlap. In the top left panel we see that for the autocorrelation-savvy manager,

the distribution of escapement shares narrows and shifts lower. Correspondingly, the distribution of harvest

levels also narrows and increases (bottom left). The distribution of stock levels narrows and shifts down

(top right).19 Finally, in the bottom right we present results for enhancing profit via autocorrelation-savvy

management. Gains come from both increasing returns during lean years (shrinking the left-hand tail) and

from exploiting boom years (expanding right-hand tail).

[Figure 8 about here.]

The distribution of outcomes in the dependent case are qualitatively similar. The only key exception is

that profit gains for the savvy manager in the dependent case are much smaller. In the base growth model

case they are essentially zero (table 1). This occurs despite the fact that harvest is substantially higher

(14.5%) for the savvy versus naive manager. We do not expect profit gains to be as high as harvest gains

because the auto-correlation savvy manager is fishing to a lower stock level with higher density-dependent
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unit harvest costs (relative to the naive manager). Still, the near zero profit gains present a puzzle that

leads to a central insight in our analysis: gains to autocorrelation-savvy management are substantial in

the independent case, but negligible in the dependent case because differences in the cost structure have

implications for (1) avoiding instances of errant high harvest for the naive manager, and (2) facilitating

instances of ideal high harvest for the savvy manager.

First, we consider the naive manager’s capacity to avoid instances of errant high harvest. In the dependent

case, increasing marginal harvest cost (as the stock is fished down) provides an “economic brake,” saving (to

some degree) the naive manager from errantly over-harvesting the stock when economic shock levels suggest

high harvest (high zP and low zC) but, in addition, expected biological shock levels (naively ignored) suggest

moderation.20 In the independent case, there is no such economic brake impeding errant high harvest by the

naive manager.21 Figure 5 shows that more aggressive harvest (low escapement) from realizing the lowest

cost (zc) or highest price (zp) shock levels for the naive manager (ρ = 0) is not ideal—this response is

tempered for the savvy manager (ρ = 0.95). These results show that an autocorrelation-naive manager can

over-respond to economic shocks—they may believe they are optimally responding to idiosyncratic shocks

when they are actually errantly driving down the stock (given the ignored autocorrelated shock levels to

come). This effect is also stronger without the “economic brake” of stock-dependent cost serving to limit

harvest.

Second, we consider how cost functions differentially allow instances of ideal high harvest for the savvy

manager. In the dependent case, increasing marginal harvest cost (in the stock) reduces the opportunity

for the savvy manager to set an aggressive harvest level when shock levels might suggest it. In contrast,

in the independent case, the savvy manager has the opportunity to aggressively draw down the stock when

prudent (e.g., given low zK and high zp). For the savvy manager, more aggressive harvest in the independent

case—specifically when zK is low—can be seen in comparing the ρ = 0.95 case in figures 5 and online-only

appendix figure 2.

As a final comparison, we consider differences in the propensity for fishery closure. These results should

be interpreted with caution since we have not imposed an explicit cost of closure in our objective function

(other than the effect on fishery profit).22 However, the results illustrate how naive management might

lead to excessive interruption of harvesting activity. We define closure as instances in which the escapement

share exceeds 99.9%. We report the percentage of periods the fishery is closed in the final line of table 1. In

all scenarios, autocorrelation-savvy management results in a substantially lower closure percentage. In the

independent case, the savvy manager achieves exceedingly rare closures (0.3% of periods), while ignoring
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autocorrelation leads to fishery closure in 4.4% of periods. In the dependent case closure is more frequent

overall (3.5-11.0%), but savvy management reduces the rate by approximately one third.

Discussion

The OECD has argued that figuring out “how uncertainty and lack of information should be taken into

account” is among the short list of most important issues to work on in fisheries (OECD 2012). However,

modeling such ecosystem realities can generate “overwhelming complexities very rapidly” (Clark and Munro

2017). Standard approaches for solving dynamic resource optimization models, such as VFI, have limited

capacity to handle increasingly detailed problems involving a large number of states and complex sources of

multiple uncertainty. Another drawback is that they do not integrate conveniently with the prevalent use

of Monte Carlo simulation analysis in the natural sciences. In contrast, ADP incorporates a larger set of

continuous states and complex sources of stochasticity with ease in a familiar forward simulation framework.

When uncertainty takes the form of stochastic draws observed between actions, ADP eliminates the need

for numerical integration (replaced by repeated simulation).

We add to the broader ADP literature with an extension to nonparametric methods. Parametric ap-

proximation of the value function can lead to instabilities in the solution procedure and large error in the

policy function. We implement a nonparametric approach to capture the value function without imposing a

functional form. The flexible approach is stable and adapts to convex-concave dynamics (critical depensation

growth model) and cost function alternatives with relative ease. Our code implementing ADP for a simple

resource model can be adapted to the dynamics and uncertainties of other systems. Using a standard fishery

management model under uncertainty, we show that ADP is reliable and accurate. Expanding on our simple

base model, we show that ADP readily handles five continuous states and four sources of uncertainty.

In addition to illustrating a new optimization tool to resource economics, we contribute to the understand-

ing of fisheries management under uncertainty. We consider uncertainty in price, cost, carrying capacity, and

growth rate. In contrast to the typical assumption of idiosyncratic shocks, we allow for shock levels that are

autocorrelated over time. In our base model we find that policy is sensitive to all four shocks: escapement

increases under high carrying capacity, low growth rate, low price, and high cost. Policy is much more

sensitive to changes in carrying capacity than other variables. These findings qualify insights from Sethi

et al. (2005, 317) who conclude that, “growth...uncertainties have only a small effect on optimal policy (and)

profits...even when uncertainties are high.” We find that shocks to growth function that are autocorrelated

have a strong impact on profit and the optimal escapement policy, which can vary by a factor of three.
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We find that accounting for autocorrelation leads to large differences in response to observed shocks. For

example, in our central case (density-independent harvest cost and base growth model) an autocorrelation-

naive manager makes big adjustments in escapement due to price and cost fluctuations (exceeding +/-50%

in some cases). In contrast, a savvy manager with knowledge that shock levels will persist somewhat makes

much smaller adjustments, less than half as large. Overall, both biological and economic shock levels are

important: optimal savvy policy is most sensitive to carrying capacity shock levels (in both directions) and

low price shock levels. We find that accounting for multiple autocorrelation simultaneously is important since

(1) the optimal response to one shock level depends on each of the others, and (2) results from the literature

on a single autocorrelated shock no longer necessarily hold when additional shocks are considered. Illustrating

the latter result, Parma (1990) finds that accounting for autocorrelation leads to raised escapement when

favorable conditions are anticipated. In contrast, we find escapement is higher when the carrying capacity

is favorable and the growth rate unfavorable.

We also find that rents from autocorrelation-savvy management strongly depend on harvest cost structure.

When harvest costs are density-dependent, savvy policy generates no or modest profit gains (relative to a

naive manager). When harvest costs are density-independent, savvy policy leads to substantial profit gains.

Driving this result is the fact that differences in harvest cost structure influence the degree to which (1) a

naive manager avoids instances of errant high harvest; and (2) a savvy manager takes advantage of conditions

for ideal high harvest.

Finally, we find that accounting for autocorrelation is important for avoiding fishery closures; the savvy

manager substantially reduces the rate of closures in all cases. A naive manager, who believes they are

optimally responding to idiosyncratic shocks, can over-respond to economic shocks, errantly driving down

the stock when not ideal; especially without the “economic brake” of stock-dependent cost.

Two other important sources of uncertainty include state measurement error (imperfect knowledge of the

state) and implementation error (imperfect achievement of the control) (Sethi et al. 2005). In such cases, the

state achieved after implementing the action may no longer be deterministic (as in the post-decision state

framework used in this article). ADP can still be used in such cases, but in modified form. One option is

to reintroduce numerical integration in the decision step to evaluate the expectation. Another option is to

add the most recent action to the vector of state variables and shift time period accounting slightly to allow

shocks that occur just after a decision is made to enter at the beginning of the following period.

Outside of economics, the use of simulation models to examine environmental systems in recent decades
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has followed the expansion of computing technology and interest in complex processes (Peck 2001). Natural

science research has a long history of using simulations to understand the properties of diverse applications,

such as fisheries, forestry, agriculture, and climate change (Petrovskii and Petrovskaya 2012). Within the

economics literature, Moxnes (2003) argues that simulation models are appealingly familiar to decision

makers. However, common economic optimization techniques used in these systems are not structured

to take advantage of forward simulation. Iterative techniques, like VFI, take an approach that is either

explicitly or stylistically consistent with backward induction (for finite-horizon and infinite-horizon problems,

respectively).23 Powell (2011, 233) argues that ADP should be seen as a “powerful tool for the simulation

community” due to the similarity in “culture.” This suggests that ADP holds strong promise for facilitating

necessary collaboration between natural scientists and economists to tackle rich bioeconomic problems.

Notes

1The Markov transition matrix contains the probability of reaching each discrete state in the next period

given the current state and action taken.

2Moxnes (2003) focuses on a particularly challenging form of uncertainty; measurement error leading to

uncertainty in the level of the state variable when choosing the action. This kind of uncertainty has been

explored more recently in several papers (Springborn and Sanchirico 2013; Kling, Sanchirico, and Wilen

2016; MacLachlan, Springborn, and Fackler 2016). While such uncertainty is not the focus here, ADP’s

facility with high dimensionality would be advantageous given the additional states dedicated to beliefs in

these models.

3Specifically, Fonnesbeck (2005) uses a tabular Q-learning algorithm based on temporal difference learn-

ing.

4Potapov (2009, 37), inspired by Monte Carlo techniques from reinforcement learning and neuro-dynamic

programming, also develops an approach for generating approximate solutions to large-scale problems. The

approach is promising for a specialized set of spatially extended systems but takes many hours to arrive at

a solution.

5Sethi et al. consider uncertainty in stock size, growth, and implementation of harvest quotas; Hanson

and Ryan (1998) and Nøstbakken (2006) consider price and stock uncertainty.

6The marginal cost expression arises from the common assumptions of constant cost (cE) per unit effort
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(Et) and harvest production function given by ht = qEtxt, where q is a catchability coefficient. Taking total

cost (cEEt) and the production function, we can restate total cost as cEEt = (cEht)/(qxt) ≡ cht/xt.

7Sethi et al. (2005) assume constant (density-independent) costs in their main analysis (subsumed into a

constant net price per unit harvest) but then consider the density-dependent costs specified in equation 2 in

their sensitivity analysis. While Sethi et al. use a uniform random growth shock, we use a normal random

variable (Bulte and Kooten 2001) truncated to a finite domain.

8Gaussian process regression is a nonparametric kernel-based approach that seeks a distribution over

possible functions that are consistent with the data. For a comprehensive overview, see Rasmussen and

Williams (2005).

9We select starting states randomly from a uniform distribution. Alternatively, starting states can be

selected randomly from n̂ or, to ensure representation of simulation chains originating across the state space,

to multiple replicates of n̂ (depending on the number of nodes in the discretization).

10If the state space is treated as discretized throughout, it is feasible to avoid this regression step and

simply replace the left-hand side of the expression in step 3(b)iv with V̄ k(nm
t ) directly (e.g., algorithm 1 in

Hull (2015)). Time for regression estimation is saved, but information obtained at a particular point is not

then used to update points around it (Powell 2011).

11Others, such as Hull (2015), have found it useful to weight observations in the regression. In our

application we found that weighting did not help. We assessed weighting applied as follows: (1) for each

node other than the first and last—which bound the state-space—assign a target node weight (ŵn) of
1

n̂−1 ;

(2) for the first and last nodes assign a target node weight of 1
2∗(n̂−1) ; (3) for each node, count the number

of observations that is closest to that node (w̃n), and finally (4) for each of the m̄ ∗ T observations, assign it

a weight of w̃n

ŵn
, where n is the node nearest to the observation.

12Using the average maximum deviation over several iterations (k̄ > 1) helps avoid premature stopping

that may result when a pair of regressions happen to produce similar results.

13A lookup table can also be used for a continuous (rather than discrete) state, whereby the table entries

represent values at particular points along a continuous function.

14For the quadratic and quartic models, residuals are, on average, below zero at very low stock levels then

above zero for some range.

24



15Comparisons were conducted using Matlab (Version 2018a) with parallel computing (eight workers)

running on a PC with an Intel Core i7-4770 Quad-Core processor (3.4 GHZ), 16GB installed RAM, and a

Windows 10 Enterprise operating system.

16In the basic Reed model a growth shock occurs after the growth function has been applied. To ac-

commodate shocks within the growth function itself, we make a small modification to the specification of

the optimization problem in equation 6. Instead of applying the growth function, G, as the last step in a

period, ADP requires that we realize growth as the first step in a period since ADP allows us to avoid use

of integration as long as shocks occur in a period before the decision is taken.

17In their respective single-shock variable models, Spencer (1997) uses ρ = 0.6 and Walters and Parma

(1996) consider ρ ∈ (0, .3, .8). Walters and Parma use a tighter normal distribution for shocks (variance of

0.05) but without evident truncation.

18Sethi et al. (2005) find non-constant escapement induced by measurement uncertainty in the fish stock.

In their case this is expected, since the measurement shock is multiplicative with respect to the current

stock, generating a marginal opportunity cost of harvest curve that shifts depending on the current stock

level. No such mechanism for a shifting marginal opportunity cost of harvest curve is present in our setting.

19Given this outcome, applying the ρ = 0 policy when ρ = 0.95 could be considered a precautionary policy,

on average. However, there are exceptions. For example, when all shock levels are at their mean, except the

growth rate shock level is at its minimum (least productive) level, the naive manager makes no adjustment,

while the savvy manager increases escapement (figure 5).

20The naive manager ignores the fact that current high or low biological shock levels are likely to persist.

21For the naive manager, more aggressive harvest in the independent case can be seen in comparing the

ρ = 0 case of figure 5 and online-only appendix figure 2—in the independent case the minimum escapement

level is around 20 compared to about 25 in the dependent case. This result is also evident across the span of

zp and zc in online-only appendix figures 5 and 6: the escapement share is typically higher in the dependent

case, especially at low stock levels.

22Our profit comparison also ignores the welfare benefits to consumers of harvest that increases under

the savvy policy.

23Rust (1997) used Monte Carlo sampling to handle integration in estimating the value function but within
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an otherwise standard VFI approach.
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List of Figures

Fig. 1: Elements of the Dynamic Core of the ADP Algorithm (step 3) for Simulationm in Block k Note: Given

the current value function estimate V̄ k−1, the starting state nm
t=1, and a stochastic shock (not pictured), the

optimal action is chosen resulting in the value ṽmt=1 (first open circle). Applying the step size δt (to handle

the expectation) provides the “data point” Ṽ m
t=1 (first solid circle). After applying the optimal action the

state updates to nm
t=2 and the sequence repeats, generating additional Ṽ m

t ∈ Ṽ until T periods have been

simulated for each block m = 1, ..., m̄ (only the first 3 data points are shown, t = 1, 2, and 3 for block m).

Regressing the states (n) on the values (Ṽ) (solid circles) generates the updated, fitted value function V̄ k.

Fig. 2: Example of the ADP Dashboard for the Base Model after k = 96 Regression Updates of the Value

Function

Fig. 3: Simulated Value Function Draws (n and Ṽ) and the Model Generated by the Regression (V̄ k) (A:C);

Residuals (D:F) Given Parametric Models (first two columns); the Nonparametric Model (last column)

Fig. 4: For the Base Model, a Comparison of Value Functions (left) and Policy Functions (right) using the

Nonparametric and Parametric Models (ADP approach) and a Lookup Table (VFI approach)

Fig. 5: Optimal Constant Escapement levels (vertical axis) for Various Shock Level Cases (horizontal axis)

without Autocorrelation (ρ = 0, dark bars) and with Autocorrelation (ρ = 0.95, light bars) Note: Shock

levels for the minimum escapement and maximum escapement cases (“min esc,” “max esc”) are at levels

that minimize or maximize escapement levels (assuming medium and high stock levels). For remaining

cases all shock levels are at their expected level (“all zi = 1”) except for the shock labeled. Harvest cost is

density-independent.

Fig. 6: Optimal Escapement Share (shading intensity) as a Function of Biological Shock Levels (zK , zR) given

Autocorrelation (ρ = 0.95) and Stock Levels (x) Varying from Low (top left plot) to High (bottom right

plot) Note: Optimal escapement share without autocorrelation (ρ = 0) appears in the title of each panel

(A∗
ρ=0). The dashed white line is the isocline at which A∗

ρ=0.95 = A∗
ρ=0. Harvest cost is density-independent.

Fig. 7: Optimal Escapement Share (shading intensity) as a Function of Economic Shock Levels (zp, zc) with

Autocorrelation (ρ = 0.95) and Stock Levels (x) Varying from Low (top left plot) to High (bottom right

plot) Note: Harvest cost is density-independent.

Fig. 8: Comparison of Simulation Outcome Frequencies under Autocorrelation and Density-independent
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Harvest Cost when Escapement Policy Applied either Accounts for Autocorrelation (ρ = 0.95) or Does Not

(ρ = 0) Note: Growth occurs either according the base model (simple logistic growth). Results are based on

5,000 simulations of 70 periods in which the first 20 periods are discarded for burn-in.
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Appendix
Additional model parameters

We present bioeconomic model parameters in table 2, followed by ADP and VFI solution parameters in table

3.

[Table 2 about here.]

[Table 3 about here.]
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Figure 1. Elements of the Dynamic Core of the ADP Algorithm (step 3) for Simulation m in Block k
Note: Given the current value function estimate V̄ k−1, the starting state nm

t=1, and a stochastic shock (not pictured),
the optimal action is chosen resulting in the value ṽmt=1 (first open circle). Applying the step size δt (to handle the
expectation) provides the “data point” Ṽ m

t=1 (first solid circle). After applying the optimal action the state updates
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t=2 and the sequence repeats, generating additional Ṽ m

t ∈ Ṽ until T periods have been simulated for each block
m = 1, ..., m̄ (only the first 3 data points are shown, t = 1, 2, and 3 for block m). Regressing the states (n) on the

values (Ṽ) (solid circles) generates the updated, fitted value function V̄ k.
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Figure 2. Example of the ADP Dashboard for the Base Model after k = 96 Regression Updates of the Value Function
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Figure 3. Simulated Value Function Draws (n and Ṽ) and the Model Generated by the Regression (V̄ k) (A:C);
Residuals (D:F) Given Parametric Models (first two columns); the Nonparametric Model (last column)
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Figure 4. For the Base Model, a Comparison of Value Functions (left) and Policy Functions (right) using the
Nonparametric and Parametric Models (ADP approach) and a Lookup Table (VFI approach)
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Figure 5. Optimal Constant Escapement levels (vertical axis) for Various Shock Level Cases (horizontal axis) without
Autocorrelation (ρ = 0, dark bars) and with Autocorrelation (ρ = 0.95, light bars)
Note: Shock levels for the minimum escapement and maximum escapement cases (“min esc,” “max esc”) are at levels
that minimize or maximize escapement levels (assuming medium and high stock levels). For remaining cases all shock
levels are at their expected level (“all zi = 1”) except for the shock labeled. Harvest cost is density-independent.
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Figure 6. Optimal Escapement Share (shading intensity) as a Function of Biological Shock Levels (zK , zR) given
Autocorrelation (ρ = 0.95) and Stock Levels (x) Varying from Low (top left plot) to High (bottom right plot)
Note: Optimal escapement share without autocorrelation (ρ = 0) appears in the title of each panel (A∗

ρ=0). The
dashed white line is the isocline at which A∗

ρ=0.95 = A∗
ρ=0. Harvest cost is density-independent.
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Figure 7. Optimal Escapement Share (shading intensity) as a Function of Economic Shock Levels (zp, zc) with
Autocorrelation (ρ = 0.95) and Stock Levels (x) Varying from Low (top left plot) to High (bottom right plot)
Note: Harvest cost is density-independent.
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Figure 8. Comparison of Simulation Outcome Frequencies under Autocorrelation and Density-independent Harvest
Cost when Escapement Policy Applied either Accounts for Autocorrelation (ρ = 0.95) or Does Not (ρ = 0)
Note: Growth occurs either according the base model (simple logistic growth). Results are based on 5,000 simulations
of 70 periods in which the first 20 periods are discarded for burn-in.

39



Table 1. Summary Statistics for 5,000 Monte Carlo Simulations with Autocorrelation (ρ = 0.95) in Shock Levels

Harvest Cost Model

Density-independent Density-dependent

Naive Savvy Diff. (%) Naive Savvy Diff. (%)

Escapement
share

0.69 0.64 -6.6 0.76 0.70 -7.58
(0.49, 0.98) (0.51, 0.82) (0.55, 1) (0.55, 0.91)

Stock
46.5 42.3 -9.1 59.0 51.9 -12.0

(25.8, 72) (23.5, 63.4) (36.6, 82.2) (32.2, 77.1)

Profit
16.2 17.8 10.0 11.0 11.0 0.2

(0.5, 33.2) (4.5, 35.7) (0, 27.3) (0.3, 27.8)

Harvest
21.3 23.9 12.1 20.1 23.0 14.5

(1.1, 40.8) (8.9, 40.9) (0, 41.5) (5.3, 41.7)
Closure freq. 4.4% 0.3% 11.0% 3.5%

Note: Escapement policy applied is either autocorrelation-savvy (assumes ρ = 0.95) or naive (assumes ρ = 0).
Growth occurs according to the base model (simple logistic growth). Harvest cost is either density-independent or
density-dependent. From each simulation mean (taken over time), reported statistics include the mean and 90%
confidence intervals (in parentheses) across simulations. The difference (percentage) reflects the relative change in
expected outcomes due to shift from autocorrelation-naive to autocorrelation-savvy management.

Appendix Table 2. Bioeconomic Model Parameters with Sources

Description Value Source

p price per unit harvest 1 Sethi et al. (2005)
c harvest cost coefficient, density-

dependent (independent)
0.75 (35) Assuming costs are typically

1/3 of revenues
β discount factor 1/(1.05) Sethi et al. (2005)
R intrinsic growth rate 1 Sethi et al. (2005)
K carrying capacity 100 Sethi et al. (2005)
K0 critical population level 25 Conrad (2010)

shock bounds zt ∈ [0.5, 1.5] Sethi et al. (2005)
µ shock mean 1
σ2 shock variance 0.1

Note: Blank indicates assumed value.
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Appendix Table 3. Illustrative ADP and VFI Solution Parameters for Results Presented in Figure 4

Description Value

T Simulation time horizon 2
m̄ Number of simulations between regressions 570
{δmin, δmax} Step size bounds {1× 10−3, 0.85}
γ Rate of step size decline 2× 10−4

k̄ Number of regression updates considered in convergence metric 10
ADP stopping tolerance for convergence 4× 10−3 (0.325)
VFI stopping tolerance for convergence 1× 10−4

Note: When parameters used for critical depensation model differ, they are provided in parentheses.
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Online Appendix
Additional ADP specifications

For the declining step size function, we use

δt = max{δmax exp(−γ(mtot −mdec)), δmin},

where δmax is the initial weight given to new information, mdec is the simulation counter value when the

switch to the declining function occurs, mtot is the simulation counter, γ is the rate at which the weight

decays as simulations accrue, and δmin is the step size lower bound. As our specific trigger to switch to a

declining step size, we consider the mean absolute deviation in the value function estimate between updates

(across nodes in the state space), i.e. the mean of the vector |V̄ k(n̂)− V̄ k−1(n̂)|, as a percentage of the mean

of the value estimate vector V̄ k−1. The switch is made once the rolling average of this metric over the last

6 updates falls below 0.275%. This threshold is identified by running the ADP algorithm and setting this

trigger at the point the metric stops falling, which captures the point at which the value function estimate

is no longer moving consistently to higher or lower values.

As a practical matter we discretize the action space, using a vector of possible harvest levels. However,

because we face no memory constraints—as we would from large, multi-dimensional arrays in a value or policy

function iteration approach—we can use an exceedingly dense discretization (e.g. 1,000 nodes). Additional

code and computing time would enable an explicitly continuous action space but would provide no additional

utility over such a dense discretization. In step 2a of the ADP algorithm an initial guess for the value function

must be set before the first block of simulations and nonparametric regression has been run. We use a simple

linear function for this initial guess.

Additional value and policy function results: growth with critical

depensation

Paralleling value and policy function solutions for the base growth model in the main text, figure 4, here we

present these functions for the critical depensation case.
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Figure 1. For the critical depensation model, a comparison of value functions (left) and policy functions (right) using
the nonparametric and parametric models (ADP approach) and a lookup table (VFI approach).

Additional simulation results: growth with critical depensation

Paralleling table 1 in the main text for the base growth model (in the results under autocorrelation section

of the main text) in this section we present simulation results for the critical depensation case.

Table 1. Summary Statistics for 5,000 Monte Carlo Simulations Given High Autocorrelation (ρ = 0.95) in Shock
Levels

Harvest Cost Model

Density-independent Density-dependent

Naive Savvy Diff. (%) Naive Savvy Diff. (%)

Escapement
share

0.68 0.66 -2.6 0.70 0.68 -2.51
(0.41, 1) (0.4, 0.96) (0.42, 1) (0.41, 1)

Stock
62.6 59.4 -5.2 65.7 62.4 -4.9

(51.8, 71.4) (35.5, 72.7) (50.5, 75.3) (38.3, 76.3)

Profit
26.5 28.4 7.1 22.8 23.8 4.5

(0, 70.3) (0.9, 81.1) (0, 67.3) (0, 77)

Harvest
35.9 37.5 4.5 36.8 38.1 3.4

(0, 90.2) (1.4, 100.1) (0, 96.1) (0, 102.4)

Closure freq. 10.4% 3.5% 14.3% 10.1%

Note: Escapement policy applied is either autocorrelation-savvy (assumes ρ = 0.95) or naive (assumes ρ = 0).
Growth occurs with critical depensation. Harvest cost is either density-independent or density-dependent. From each
simulation mean (taken over time), reported statistics include the mean and 90% confidence intervals (in parentheses)
across simulations. The difference (percentage) reflects the relative change in expected outcomes due to shift from
ignoring to accounting for autocorrelation.

2



Additional base growth model results under autocorrelation: density-

dependent harvest cost

Paralleling figures for density-independent harvest cost (in the results under autocorrelation section of the

main text) in this section we present results for density-dependent harvest cost.

127

al
l z
i =1

m
in
 e

sc

m
ax

 e
sc

m
in
 z
p

m
ax

 z
p

m
in
 z
c

m
ax

 z
c

m
in
 z
K

m
ax

 z
K

m
in
 z
R

m
ax

 z
R

0

20

40

60

80

100

c
o
n
s
ta

n
t 
e
s
c
a
p
e
m

e
n
t 
le

v
e
l

 = 0

 = 0.95

Figure 2. Optimal constant escapement Levels (vertical axis) for various shock level cases (horizontal axis) without
autocorrelation (ρ = 0, dark bars) and with autocorrelation (ρ = 0.95, light bars). Shock levels for the minimum
escapement and maximum escapement cases (“min esc”, “max esc”) are at levels that minimize or maximize escape-
ment levels (assuming medium and high stock levels). For remaining cases all shock levels are at their expected level
(“all zi = 1”) except for the shock labeled. Harvest cost is density-dependent.
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Figure 3. Optimal escapement share (shading intensity) as a function of biological shock levels (zK , zR) with auto-
correlation (ρ = 0.95), base growth model, density-dependent harvest cost, and stock levels (x) varying from low (top
left plot) to high (bottom right plot). Optimal escapement share for the no serial correlation case (ρ = 0) appears in
the title of each figure (A∗

ρ=0). The dashed white line is the isocline at which A∗
ρ=0.95 = A∗

ρ=0, except where A∗0 is
close to 1.
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Figure 4. Optimal escapement share (shading intensity) as a function of economic shock levels (zp, zc) with autocor-
relation (ρ = 0.95), base growth model, density-dependent harvest cost, and stock levels (x) varying from low (top
left plot) to high (bottom right plot).
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Additional results for policy functions under no autocorrelation

In this section we present additional escapement policy function results under no autocorrelation with density-

independent harvest cost (figure 5) and density-dependent harvest cost (figure 6).
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Figure 5. Optimal escapement share (shading intensity) as a function of economic shock levels (zp, zc) given no
autocorrelation (ρ = 0), base growth model, density-independent harvest cost, and stock levels (x) varying from low
(top left plot) to high (bottom right plot).
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Figure 6. Optimal escapement share (shading intensity) as a function of economic shock levels (zp, zc) given no
autocorrelation (ρ = 0), base growth model, density-dependent harvest cost, and stock levels (x) varying from low
(top left plot) to high (bottom right plot).
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