Abstract

Standard dynamic resource optimization approaches, such as value function iteration, are challenged by problems involving complex uncertainty and a large state space. We extend a solution technique to address these limitations called “forward dynamic programming” (FDP). FDP recently emerged in the macroeconomics literature and is novel to bioeconomics. We demonstrate FDP in solving a simple fishery management model under uncertainty to show: the mechanics of FDP in simplest form; the accuracy of FDP; the value of a nonparametric extension; and readily adaptable, non-specialized code. We then demonstrate FDP’s capacity to handle rich bioeconomic problems by solving the fishery management problem subject to four autocorrelated shock processes (governing economic returns and biological dynamics) which entails four sources of stochasticity and five continuous state variables. We find that accounting for multiple autocorrelation has important impacts on harvest policy and generates gains that depend crucially on the structure of harvest cost.

Key words: dynamic optimization; bioeconomic; fishery; uncertainty; approximate dynamic programming; forward dynamic programming; simulation; nonparametric; autocorrelation; non-stationarity

JEL codes: C61, Q22, Q57
1 Introduction

Resource management models usually require the marriage of social-environmental modeling and optimization techniques. For example, a standard analysis of efficient fishery management might involve solving an integrated model of biology and user behavior using dynamic programming tools like value function iteration (VFI). To date, these tools have generated useful intuition by providing reliable solutions to relatively simple problems. However, such standard approaches are not well-positioned to address evolving future needs. The frontier of natural resource management is moving towards an ever richer representation of social-environmental systems, involving an expanding appetite for incorporating more states, increasingly evoking the curse of dimensionality. Furthermore, capacity to address uncertainty is central (LaRiviere et al., 2017). In a recent review of dynamic analysis in fisheries, Clark and Munro (2017) argue that we are forced to face “the question of how best to mitigate the consequences of uncertainty” given the centrality of uncertain returns to investment in resource management.

In this paper we illustrate and extend a Monte Carlo simulation-based stochastic optimization approach that is novel to natural resource management involving “forward dynamic programming” (FDP). Key strengths of FDP are (1) its facility with high-dimension problems, and (2) its use of simulation to capture complex uncertainty in biophysical and economics dynamics. FDP first appeared in the operations research and engineering literatures (Powell, 2007; Bertsekas, 2011). Judd et al. (2011), followed by Maliar and Maliar (2013) and Hull (2015), were the first to develop full applications of this method in the economics literature, specifically to solve high-dimension macroeconomic problems. While the approach is sometimes referred to as “approximate dynamic programming”, this name also refers to a broader set of solution techniques (e.g. see Simao et al. 2009; Van Roy et al. 1997; Wright and Williams 1984). For precision, we call this particular approximate dynamic programming technique “forward dynamic programming” since repeated Monte Carlo simulations running forward in time are used to incrementally improve the solution to the management problem.¹

To our knowledge there are two existing approaches for using simulation in bioeconomic optimization. Taleghan et al. (2015) and Hall et al. (2017) use simulation to construct an approximation of the Markov transition matrix before solving with standard VFI.² This approach facilitates complex uncertainty processes for which “exact inference is intractable” (Taleghan et al., 2015). Alternatively, Moxnes (2003) begins with specifying a functional form for the policy (defined over the state space) that is conditioned on a policy parameter vector. Next, multiple paths for stochastic shocks are produced, each over the same finite-horizon. Finally, nonlinear optimization is used to identify the policy parameter vector that maximizes the average welfare across the set of simulations.³ While both of these approaches expand the frontier of bioeconomic optimization, they have limitations. First, they introduce approximation error through an assumed policy function form (Moxnes, 2003) or an approximated Markov transition matrix (Taleghan et al., 2015; Hall

¹Another, less common, alternative name is “neuro-dynamic programming” (Hull, 2015).
²The Markov transition matrix contains the probability of reaching each discrete state in the next period given the current state and action taken.
³Moxnes (2003) focuses on a particularly challenging form of uncertainty, measurement error leading to uncertainty in the level of the state variable when choosing the action. This kind of uncertainty has been explored more recently in several papers (Springborn and Sanchirico, 2013; Kling et al., 2016; MacLachlan et al., 2016). While such uncertainty is not the focus here, FDP’s facility with high dimensionality would be advantageous given the additional states dedicated to beliefs in these models.
et al., 2017). Second, both approaches struggle with scale as additional dimensions in state space are considered, due to the standard dimensionality limits of VFI and further in the approach of Moxnes (2003) via simplification required in the policy function.

FDP allows for the application of dynamic programming to particularly “large and complex problems”, providing tractability despite high dimensionality (Bertsekas, 2011). Demand on computer memory—a common bottleneck in numerical optimization—is limited since the core of the procedure is forward simulation rather than manipulation of large arrays (as in VFI). In richer problems, transition dynamics can be so complex that inference is intractable, leaving simulation the only practical approach for treating dynamics (e.g. as Taleghan et al. (2015) show in a bioeconomic model of invasive riverine tamarisk control). Instead of handling stochasticity through numerical integration or the construction of potentially large (state and action-dependent) Markov transition matrices, FDP uses Monte Carlo simulations to inform the expectation. This minimizes the complexity and potential inaccuracies these elements can generate.

The first key objective of this paper is to demonstrate in simplest form the essential elements of FDP for solving environmental management problems. To do so we use FDP to solve a basic resource management model, specifically the canonical model of fishery management under uncertainty developed by Reed (1979). The accompanying computer code we provide for this simple model is accessible and readily adaptable to other resource management problems. We provide Matlab code for replicating the analyses in this paper at https://github.com/mspringborn/FDP_simple_fishery. This intentionally simple first model allows us to also solve the problem with a standard VFI approach to verify FDP’s accuracy and reliability.

Dynamic programming typically requires representation of a value function at its core. Contributing more broadly to the FDP literature, we show the utility of a nonparametric representation of the value function to address weaknesses of existing approaches. Using the simple Reed model, we compare the performance of parametric methods (common in the nascent FDP literature) with our nonparametric approach. While parametric methods are subject to substantial error, the nonparametric approach can accurately identify optimal policies and value functions.

The second key objective of this paper is to generate new insights in applying FDP to a pressing problem with complex uncertainty and a large state space. Since Reed’s (1979) analysis of a single source of uncertainty in stock dynamics, a growing literature has examined various kinds of uncertainty. This includes uncertain stock levels (Clark and Kirkwood, 1986; Roughgarden and Smith, 1996; Sethi et al., 2005), uncertain harvest implementation (Roughgarden and Smith, 1996; Sethi et al., 2005), uncertainty and spatial interactions (Costello and Polasky, 2008); uncertainty and capital adjustment (Singh et al., 2006); and the effect of attitudes toward risk (Lewis, 1981; Kapaun and Quaas, 2013). Many studies involve random perturbations to the bioeconomic model (Walters and Hilborn, 1978; Nostbakken and Conrad, 2007). Nostbakken (2006) observes that such studies usually focus on a single source of uncertainty. Some exceptions that consider two or three sources include Hanson and Ryan (1998), Sethi et al. (2005) and Nostbakken (2006).

Another typical simplification is to assume that shock levels are independent and identically distributed (i.i.d.) over time. A handful of exceptions allow shock levels to evolve in an autocorrelated

4Sethi et al. consider uncertainty in stock size, growth, and implementation of harvest quotas; and Hanson and Ryan and Nostbakken consider price and stock uncertainty.
fashion over time (Parma, 1990; Walters and Parma, 1996; Spencer, 1997; Nøstbakken, 2006). However, treatment is limited to a single autocorrelated variable. Limitations to the number of sources of uncertainty are driven by the fact that “the computational challenges are significant” (Rodriguez et al., 2011). On top of this, accounting for autocorrelation in shock levels requires an additional state variable for each stochastic parameter. To show FDP’s facility with such complexity, in the latter half of the paper we extend the model to a problem with four autocorrelated shock processes, which, combined with the stock level, requires five continuous state variables.

Rodriguez et al. (2011) argue that accounting for fluctuations in multiple bioeconomic parameters “that arise in any real-world management situation is important”. Nøstbakken and Conrad (2007) note that uncertainty can enter in many ways, including biologically—due to stochastic stock-growth dynamics—as well as economically, through fluctuating prices and costs. Earlier work addressing parameter variation has mainly focused on one type or the other. We consider two sources of biological uncertainty and two sources of economic uncertainty, operating simultaneously.

Autocorrelation in stochastic parameters is a common reality in bioeconomic settings. Parma (1990) and McGough et al. (2009) observe that autocorrelated productivity shocks are apparent in many fisheries, belying the typical assumption of a stationary stock-recruitment relationship (i.e. with i.i.d. shock levels). Economic parameters such as price and harvest cost are also likely autocorrelated due to persistent trends in demand (due to evolving consumer tastes, dynamics of substitute goods, etc.) and supply (due to evolving costs in the labor market and input costs like fuel). Nøstbakken (2008) and Deroba and Bence (2008) argue that research is needed to address the implications of autocorrelation for optimal management.

Autocorrelated shock levels can have important effects on optimal management. For example, autocorrelation associated with biological dynamics (e.g. predatory pressure, general mortality, and growth) affects optimal policy (Parma, 1990; Spencer, 1997; Singh et al., 2006) and static policies are less efficient (Walters and Parma, 1996). Parma (1990) finds that “escapements are raised when favorable conditions are anticipated and they are lowered when poor environments are expected” and that “feedback responses reinforce recruitment fluctuations and lead to a sequence of boom and bust periods in the fishery.” In one of the few studies with autocorrelation on the economic side of the model, Nøstbakken (2006) conducts a real options analysis of a switching policy (from no harvest to a maximum harvest level) under prices that follow geometric Brownian motion (and with uncertainty in stock growth). While she finds that pulse fishing is optimal, she observes that the maximum harvest rate of the fishing fleet dominates the switching decision, rather than price volatility.

Although ignoring autocorrelation when determining optimal policy can lead to inaccurate results, bioeconomic models typically ignore it or consider only a single source. This is likely due, at least in part, to the computational challenge of solving such problems with traditional dynamic optimization methods, since each autocorrelated parameter carries an additional state variable and source of stochasticity. Here we show that FDP handles integrating over four sources of stochasticity and five continuous state variables with relative ease.

Relative to naively treating shocks to parameters as i.i.d., we find that accounting for autocorrelation leads to large differences in response to observed shocks. We also find that optimal policy is quite sensitive to shocks to stock-recruitment function and thus previous findings that growth uncertainty has a negligible effect on optimal policy (Sethi et al., 2005) do not hold in general.
While economic shocks are important, they are typically dominated by biological shocks. Additional rents from autocorrelation-savvy management strongly depend on harvest cost structure. Finally, accounting for autocorrelation is important for avoiding fishery closures: the savvy manager substantially reduces the rate of closures in all cases.

2 Methods

2.1 The Bioeconomic Model

To illustrate the FDP approach we replicate the standard stochastic dynamic fishery model originated by Reed (1979). The problem entails a sole-owner selecting harvest to maximize the expected present value of profits subject to the specified growth dynamics. In each period \(t \), the manager observes the fish stock available for harvest, \(x_t = z_t n_t \), where \(n_t \) is the initial stock and \(z_t \) is a multiplicative “growth” shock. After the manager chooses the level of harvest, \(h_t \), the escapement, \(s_t = x_t - h_t \), grows according to a logistic stock-recruitment equation:

\[
 n_{t+1} = G(s_t) = s_t \left[1 + R \cdot \left(1 - \frac{s_t}{K} \right) \right],
\]

where \(R \) is the growth rate and \(K \) is the carrying capacity.

The objective is to maximize the present value of long-run profits, where the profit function is given by \(\pi(h_t|x_t) \) and \(\beta \) is the discount factor. Profit is assumed to follow

\[
 \pi(h_t|x_t) = p \cdot h_t - \int_{x_t-h_t}^{x_t} \left(\frac{c}{X_t} \right) dX_t = p \cdot h_t - c \cdot \ln \left(\frac{x_t}{x_t-h_t} \right),
\]

where \(p \) is the price per unit of harvest and \(c \) is a constant (Reed, 1979).5 We generally follow Sethi et al. (2005) in our specification of bioeconomic parameters as summarized in the appendix.6

The standard problem specified above is known to lead to a well-behaved value function. To provide a stronger challenge we also consider an alternative growth model that generates a convex-concave value function. Modifying the logistic stock-recruitment equation \(G(s_t) \) in Equation 1 following Conrad (2010, p. 77) we add the following additional form exhibiting critical depensation:

\[
 n_{t+1} = G_c(s_t) = s_t \left[1 + \frac{R}{K} \left(\frac{s_t}{K} - 1 \right) \right],
\]

where \(R \) is the growth rate, \(K \) is the carrying capacity and \(K_0 \) is the “critical population level”. Because \(n_{t+1} < s_t \) when \(s_t \in (0, K_0) \), in a deterministic model \(K_0 \) is also the “minimum viable

5The marginal cost expression arises from the common assumptions of constant cost \((c_E) \) per unit effort \((E_t) \) and harvest production function given by \(h_t = q E_t x_t \), where \(q \) is a catchability coefficient. Taking total cost \((c_E E_t) \) and the production function, we can restate total cost as \(c_E E_t = (c_E h_t)/(q x_t) \equiv c h_t / x_t \).

6Sethi et al. (2005) assume constant (density-independent) costs in their main analysis (subsumed into a constant net price per unit harvest) but then consider the density-dependent costs specified in Equation 2 in their sensitivity analysis. While Sethi et al. use a uniform random growth shock, we use a normal random variable (Bulte and van Kooten, 2001) truncated to a finite domain.
population”. However in the our model it is possible for growth shocks to move the population in and out of this negative growth stock range. In contrast to $G(s_t)$, $G_c(s_t)$ is not consistently concave—the critical depensation leads to a convex function when $s_t \in (0, (K + K_0)/3)$. Bulte and van Kooten (2001, p. 90) motivate the use of this form arguing that population dynamics are “more complex than usually modeled by economists” and that “it is necessary to expand the ecological underpinnings” of bioeconomic models.

A common form of the Bellman equation for this problem is:

$$ J(x_t) = \max_{h_t} \{ \pi(h_t|x_t) + \beta E_z [J(x_{t+1})] \} $$

s.t.

$$ x_{t+1} = z_{t+1} G(x_t - h_t), $$

$$ h_t \leq x_t. $$

(4)

However, by shifting the value function argument to be the pre-shock state (n_t) the Bellman can be re-expressed as:

$$ V(n_t) = E_z \left[\max_{h_t} \{ \pi(h_t|n_t, z_t) + \beta V(n_{t+1}) \} \right], $$

s.t.

$$ n_{t+1} = G(z_n t - h_t), $$

$$ h_t \leq z_t n_t. $$

(5)

This expression results from shifting the accounting of events back by one operation such that the first step is the realization of the shock. This moves the expectations operator outside of the maximization calculation. This way of framing the decision problem is sometimes referred to as using the “post-decision state” (Judd, 1998). Here the approach simply involves positioning the start of a period such that the stochastic event occurs first. This structure allows the maximization problem (conditional on the shock) to be deterministic. Furthermore, this structure allows avoidance of numerical integration to calculate the expectation directly since the Monte Carlo simulations used in FDP serve to capture uncertainty (Hull, 2015). These features can significantly simplify solving for the value function as exploited in the solution technique described next.

2.2 Solution Method

As an alternative to standard iterative approaches (e.g. VFI) for solving dynamic stochastic models, FDP can be characterized broadly as a stochastic simulation method. Other numerical alternatives include projection methods and perturbation methods. Judd et al. (2011) provide a useful overview of the relative advantages and disadvantages across these three classes. Projection methods involve approximating solutions over a given domain using deterministic integration. They are quick and accurate but slow dramatically when the number of state variables expands. Perturbation methods identify solutions locally using Taylor expansions of optimality conditions. They can handle high-dimensional applications, but accuracy is limited.

Stochastic simulation methods in general can handle high-dimensional applications. However, they can be less accurate than projection methods and are subject to potential numerical instability. Judd et al. (2011) developed a generalized stochastic simulation algorithm aimed to be accurate, stable, and able to handle high-dimensional applications. They achieve this primarily by normalizing variables, implementing parametric regression tools for ill-conditioned problems (e.g. Tikhonov...
regularization), and choosing the integration method carefully. Below we present the FDP algorithm for solving the standard problem from the bioeconomic model section above to demonstrate its accuracy relative to established methods, develop a nonparametric extension and convey the intuition and mechanics of the approach in a simple, yet meaningful, setting.

Our FDP algorithm is informed by precursors from Judd et al. (2011), Maliar and Maliar (2013) and Hull (2015). The intuition is as follows. We start with a rough guess of the value function. Conditional on this guess, we generate a set of observed draws from the value function, constructed from a draw of the stochastic shock and the resulting optimal management choice. We next use regression to fold the set of value function observations into an updated value function estimate. This process is repeated until the value function converges.

Next we outline the individual steps of FDP in compact fashion before describing key components in greater detail further below. The first two steps involve setup and initialization—the dynamic core of the algorithm is executed in step 3 and depicted in part in Figure 1.

A forward dynamic programming algorithm:

1. Set FDP parameters and functional forms.
 (a) Choose the time horizon, T, for each simulation.
 (b) Choose the number of simulations to complete in a block before executing each regression step, m.
 (c) Choose a functional form for determining the step size, $\delta_t \in [0, 1]$.
2. Initialize the value function and the state space.
 (a) Select an initial guess for the value function over the domain of the states, $\hat{V}^{k=0}(n)$.
 (b) Define a discretization of the state space, \hat{n}.
 (c) Set the regression counter to $k = 1$.
3. For each simulation iteration $m = 1, \ldots, \hat{m}$, in block k, execute the following steps:
 (a) Select an initial state, $n_{t=1}^m \in \hat{n}$.
 (b) For each period $t = 1, \ldots, T$ in the simulation, execute the following steps:
 i. Randomly select the shock for this period and simulation, z_t^m.
 ii. Choose h_t^* to maximize the deterministic expression of value:
 $$
 \max_{h_t} \left\{ v_t^m(h_t | n_t^m, z_t^m) = \pi(h_t | n_t^m, z_t^m) + \beta V^{k-1}(n_{t+1}^m) \right\}.
 $$
 iii. Obtain and store the optimized value (given h_t^*):
 $$
 \hat{v}_t^m(n_t^m) = v_t^m(h_t^* | n_t^m, z_t^m).
 $$
 iv. Calculate the step size, $\delta_t \in [0, 1]$.
 v. Compute the expectation with a linear combination of the newly obtained optimized value and the previously approximated value at state n_t^m:
 $$
 \hat{V}_t^m(n_t^m) = \delta_t \hat{v}_t^m(n_t^m) + (1 - \delta_t) V^{k-1}(n_t^m).
 $$
 vi. Compute the next period state, $n_{t+1}^m = G(n_t^m, z_t^m, h_t^*)$.
 (c) After completing \hat{m} simulations of T periods each, there are $\hat{m} \times T$ observations of the state vector visited (n) and the associated updated value estimate (\hat{V}). Regress n on
Figure 1: Elements of the dynamic core of the FDP algorithm (step 3), for simulation \(m \) in block \(k \). Given the current value function estimate \(\bar{V}^{k-1} \), the starting state \(n_{t=1}^m \), and a stochastic shock (not pictured), the optimal action is chosen resulting in the value \(\bar{v}_{t=1}^m \) (first open circle). Applying the step size \(\delta_t \) (to handle the expectation) provides the “data point” \(\bar{V}_{t=1}^m \) (first solid circle). After applying the optimal action the state updates to \(n_{t=2}^m \) and the sequence repeats, generating additional \(\bar{V}_{t}^m \in \bar{V} \) until \(T \) periods have been simulated for each block \(m = 1, \ldots, \bar{m} \) (only the first 3 data points are shown, \(t = 1, 2, \) and 3 for block \(m \)). Regressing the states \((n) \) on the values \((\bar{V}) \) (solid circles) generates the updated, fitted value function \(\bar{V}^k \).

\[\bar{V}^{k-1} \]

(d) Define \(\bar{V}^k \) as the fitted model from the regression.

(e) Check for convergence. Calculate the maximum deviation between the current and former value function estimate across the set \(\bar{n} \): \(\Delta_k = \max \{ \bar{V}^k(\bar{n}) - \bar{V}^{k-1}(\bar{n}) \} \). If the average of \(\Delta_k \) over the last \(k \) regressions is less than the stopping tolerance, the convergence criterion is met and the program can be terminated.\(^9\) Otherwise, increment the regression counter by one \((k = k + 1) \) and repeat step 3.

After convergence, the optimal policy function, \(h(n_t) \), is computed using the final estimate of the value function above, \(\bar{V} = \bar{V}^k \).

Parameter values and further details of the FDP algorithm are presented in the appendix. Selecting the number of periods per simulation, \(T \), is chosen to balance a tradeoff. On the one hand we want to ensure that the implications of starting at a given state are “felt”, for example the possibility of

\(^7\)If the state space is treated as discretized throughout, it is feasible to avoid this regression step and simply replace the left hand side of the expression in step 3(b)v with \(\bar{V}^k(n_t^m) \) directly (see e.g. algorithm 1 in Hull (2015)). Time for regression estimation is saved but information obtained at a particular point is not then used to update points around it (Powell, 2011).

\(^8\)Others such as Hull (2015) have found it useful to weight observations in the regression. In our application we found that weighting did not help. We assessed weighting applied as follows: (1) for each node other than the first and last–which bound the state-space–assign a target node weight \((\bar{w}_n) \) of \(\frac{1}{\bar{m}-1} \); (2) for the first and last nodes assign a target node weight of \(\frac{1}{2(\bar{m}-1)} \); (3) for each node, count the number of observations that is closest to that node \((\bar{w}_n) \), and finally (4) for each of the \(\bar{m} \times T \) observations, assign it a weight of \(\frac{\bar{w}_n}{\bar{w}_n} \) where \(n \) is the node nearest to the observation.

\(^9\)Using the average maximum deviation over several iterations \((k > 1) \) helps avoid premature stopping that may result when a pair of regressions happen to produce similar results.
the population increasing or decreasing. On the other hand, excessive representation of the steady state region— to which simulation chains congregate given sufficient time—does not provide much additional information. The number of simulation chains in a block between each regression step, \(k \), is selected to balance another tradeoff: increasing \(k \) allows for more extensive representation of chains initiated across the state space but this delays incorporation of new information in the regression step (3c) slowing convergence.

In step 3a, starting states can be selected randomly from \(\hat{n} \). However, to ensure representation of simulation chains originating across the state space, we simply set the collection of starting states in a block equal to multiple replicates of \(\hat{n} \).

The step size, \(\delta_t \), specifies the relative weighting of new versus existing information as implemented in step 3(b). A larger weight on new information is useful at the outset since the initial guess is likely to be poor and speedy transition to the neighborhood of the solution is desirable. However, once the value function estimate has transitioned to a stable neighborhood, a lower weight is desirable to temper the influence of new stochastic realizations of value (as we seek to converge on the expected value function). Application of the step size is alternatively called smoothing, a linear filter or stochastic approximation. It is required solely due to the randomness in observed values of \(\hat{r}^m_t \) and facilitates computation of the expectation (Powell, 2011).

A number of alternative step size functions have been explored in the literature, including constant and decreasing weights (see Powell 2011). Hull (2015) states that a desirable step size formulation is high during early iterations but falls quickly as observations accrue and subsequently become less informative. We use a step size that is initially high and constant while the value function estimate is moving away from the initial guess and consistently towards higher or lower values. Once the value function estimate is no longer consistently moving in one direction, we switch to a step size function that decreases exponentially until reaching a lower bound (as detailed in the appendix).

The approach outlined above facilitates continuous state, shock and action variables with relative ease. While we do define a discretization of the state space (\(\hat{n} \)) this vector only serves as a convenience for selecting starting points for each simulation chain and a set of nodes at which we check for convergence in the value function. The state is allowed to vary continuously in the Monte Carlo simulation step.

In Figure 2 we present our FDP “dashboard” to provide a snapshot of the algorithm in action after a limited number of regression steps (\(k = 96 \)). Subplot 2A illustrates the last block of simulated value function draws (\(\hat{n} \) and \(\hat{V} \)) and the model generated by the regression (\(\hat{V}^k \)). 2B shows the residuals from the regression which can illustrate if and when bias is introduced into the value function model (discussed further below). 2C shows the path of the convergence statistic. Instead of using the maximum absolute deviation from the a single regression update (\(\Delta_k \))—which is highly variable and could result in a false indication of convergence—we use a rolling average over the last 10 updates. 2D shows the current estimate of the policy function (in escapement units) given the post-shock level of the stock (\(n \cdot z \)). 2E shows the step size, loosely the weight on new information. We maintain a high, constant step size until the threshold for switching to the declining formulation is reached as depicted in 2F (at \(k = 80 \) in this example). For the step size statistic we also use a rolling average to ensure the switch is not driven prematurely by a stochastic draw.
2.3 Flexible representation of the value function

We also aim to advance methodology for a historically frustrating component of dynamic optimization: representation of the value function. In step 2 of the algorithm above, the value function must be captured via a lookup table, parametric model or nonparametric model (Powell, 2011, p. 233). This choice is tied to the regression procedure used in step 3c. The regression step exploits the observed information in n and e to update the value of states surrounding the observations.

Existing applications have used either a lookup table (e.g. Hull 2015) or a parametric model (e.g. Judd et al. 2011; Maliar and Maliar 2013). A lookup table for the value function defined at discrete values is simple: no particular structure is imposed on the value over the state variables. However this approach generates discretization bias, especially as dimensions increase and grids become more coarse to ensure tractability. In contrast, parametric (e.g. polynomial) models exploit structure in the value over the state variables (Powell, 2011, p. 304). The advantage is that fewer points are needed and optimization is accelerated by the increased smoothness (Judd, 1996). However, as Powell (2011, p. 316) summarizes, the promise of parametric models is countered by a key handicap: “they are only effective if you can design an effective parametric model, and this remains a frustrating art”.

To address the weaknesses of both lookup tables and parametric approximations, we extend the FDP toolbox to implement a nonparametric representation of the value function. This generates

10 A lookup table can also be used for a continuous (rather than discrete) state, whereby the table entries represent values at particular points along a continuous function.

11 For the initial problem of a single state variable we use the constrained generalized additive model (CGAM) rou-
a continuous function that allows for very flexible behavior without the need to choose a specific parametric structure. Powell (2011, p. 316) observes that nonparametric methods hold “tremendous” promise but face substantial challenges. We implement a nonparametric approach that uses data from Monte Carlo simulations to establish both the structure and levels of the function.

3 Results

We solve the management problem specified in Equation 5 using FDP with a nonparametric value function and various parametric alternatives. As a benchmark, we also solve the problem with the standard value function iteration (VFI) approach (see Judd 1998). This allows us to show that nonparametric FDP reliably and accurately identifies optimal solutions, while parametric approaches are problematic.

Before presenting FDP and VFI solutions below, we first illustrate the problem created by parametric functional form approaches to the FDP value function. In Figure 3 we present a snapshot of the key regression step in the middle of the solution process (i.e. given some arbitrary number of regression steps already completed but well before convergence). The top row illustrates the last block of simulated value function draws (\(n\) and \(\bar{V}\)) and the model generated by the regression. The first two columns illustrate outcomes under a parametric model (quadratic or quartic) while the final column follows from the nonparametric model. Visually we see that the parametric models admit shapes known to be inappropriate for this model. Both parametric models are decreasing over some part of the state space. The value function should be concave and non-decreasing. The quadratic model fails to capture this shape and the quartic model results in undesirable convexity to approach the expected shape. A cubic model (not presented here) resulted in similar problems.

Such shape property violations are known to lead to unstable fluctuations and substantial errors in standard VFI applications (Cai et al., 2016). The residuals of these regressions show the bias introduced by the parametric models: residuals trend positive and negative in a systematic fashion. Essentially the “data” from the simulated observations is unable to “pull” the function into a more accurate shape given the parametric form. In contrast, the nonparametric value function meets shape expectations and residuals are centered around zero. As expected, residuals are increasing in the stock (\(n\)) since stochasticity in the model enters as a multiplicative shock to the population. Observations in Figure 3 are sparse at larger stock levels and sometimes concentrated near a particular midpoint. This is expected given the constant escapement policy that emerges (inclusive of post-harvest stock growth) as seen in Figure 2D.

\footnote{This routine returns a maximum likelihood estimator that is identified using an iteratively reweighted cone projection algorithm. The CGAM routine also allows for the imposition of constraints with respect to shape (concavity/convexity), monotonicity (increasing/decreasing), and smoothing. For the subsequent problem involving multiple state variables we use the Matlab function fitrgp, which fits a Gaussian process regression model. This approach is preferable to CGAM for multiple state variables since fitrgp embeds interactions in variables whereas CGAM relies on an additive model which requires explicit specification of interaction terms.}

\footnote{For the quadratic and quartic models, residuals are on average below zero at very low stock levels then above zero for some range.}
3.1 Value and policy function solutions

Next we present solution results for the base growth model without the convexity introduced by critical depensation. In Figure 4 we show the value functions (left subplot) and policy functions (right subplot) that result from the VFI solution approach and from FDP under the nonparametric and 3 parametric models. We identify the VFI solution (solid line) using a lookup table representation of the value function—values for points in the continuous state space (specifically at \tilde{n}) are represented as a vector. While this approach can be burdensome in terms of computer memory use for multi-state problems, the single state considered here is easily captured. The lookup table approach also imposes no constraints on the shape of the value function. Thus, in our application, VFI generates the benchmark solution as a reference to assess the performance of the other approaches.

In Figure 4 we see that our nonparametric FDP approach is the only FDP alternative to successfully identify the optimal policy and value function. The VFI and nonparametric FDP results are visually indistinguishable. The parametric value functions—as foreshadowed in Figure 3—take unreasonable forms and the escapement policy is biased. In Figure 5 we present parallel results for the critical depensation growth model. Here, again, the nonparametric FDP approach accurately identifies the convex-concave form of the value function while the other parametric FDP approaches fail. In particular the quadratic FDP solution for the value function is extremely biased, topping out at around four times the level of the VFI/nonparametric FDP solution.

A key metric of performance is the policy function error relative to the benchmark VFI (lookup table) approach given by a constant escapement level. Under both growth models, the nonparametric
Figure 4: For the base model, a comparison of value functions (left) and policy functions (right) using the nonparametric and parametric models (FDP approach) and a lookup table (VFI approach).

Figure 5: For the critical depensation model, a comparison of value functions (left) and policy functions (right) using the nonparametric and parametric models (FDP approach) and a lookup table (VFI approach).
FDP approach is quite accurate, with an error of 0.2% to 0.4%. In contrast, parametric approaches show error between 1.4% to 67%. The cubic FDP approach fails to capture the true shape of the value function, but (presumably by chance) shows here the least amount of error. However, the error is not consistently low, ranging from 1.4% to 20% depending on the growth model. The most flexible function (quartic) performs worst, with error of 16% to 67%. The error generally increases with the order of the parametric model, albeit with an exception (i.e. cubic value function for the critical depensation growth model).

3.2 Accounting for autocorrelation in multiple shock levels: several continuous states and sources of uncertainty

To demonstrate the capacity of FDP to handle several continuous state variables and several sources of uncertainty we extend the model to incorporate multiple autocorrelated shocks to parameters. In the biological model, in lieu of the single multiplicative growth shock \(z_t \cdot n_t \), we embed shocks to carrying capacity \(z_t^K \) and to the growth rate \(z_t^R \) directly in the stock-recruitment function \(G \):

\[
x_t = G(z_t^K, z_t^R, n_t) = n_t \left[1 + z_t^R \left(1 - \frac{n_t}{z_t^K K} \right) \right].
\]

For the critical depensation model, \(G_c \) we consider shocks to the carrying capacity and the critical population level \(z_t^{K_0} \):

\[
x_t = G_c(z_t^K, z_t^{K_0}, n_t) = n_t \left[1 + R \cdot \left(1 - \frac{n_t}{z_t^K K_0} \right) \left(\frac{n_t}{z_t^{K_0} K_0} - 1 \right) \right].
\]

We also incorporate profit shocks to price \(z_t^p \) and cost \(z_t^c \):

\[
\pi(z_t^p, z_t^c, h_t|x_t) = z_t^p h_t - z_t^c c \cdot \ln \left(\frac{x_t}{x_t - h_t} \right).
\]

Equation 8 maintains the assumption of density-dependent harvest cost. We also consider density-independent harvest costs given by \(z_t^c c \cdot h_t \). Results discussed below show that the cost function form holds a strong influence on the welfare returns to autocorrelation-savvy management.

In the three equations above we assume that the shock levels, \(z_t^i \), can be autocorrelated. We generally follow the autocorrelated, stochastic process specification of Spencer (1997) where the shock levels evolve according to

\[
z_{t+1}^i = \rho \cdot z_t^i + (1 - \rho) + \epsilon_t,
\]

where \(\rho \) is the first-order autocorrelation coefficient and \(\epsilon_t \) is a mean-zero normal random variable. The long run expected value of \(z_t^i \) is 1 and we restrict the range to \(z_t^i \in [0.5, 1.5] \). When \(\rho = 0 \) there is no serial correlation—the process is pure white noise. Below we consider cases without and with

\(^{13}\)In the basic Reed model a growth shock occurs after the growth function has been applied. To accommodate shocks within the growth function itself we make a small modification to the specification of the optimization problem in Equation 5. Instead of applying the growth function \(G \) as the last step in a period, FDP requires that we realize growth as the first step in a period since FDP allows us to avoid use of integration as long as shocks occur in a period before the decision is taken.
autocorrelation: $\rho \in \{0, .95\}$. The standard error of ϵ_t is scaled so that the variance of z^*_t remains the same (0.1) regardless of the value of ρ.

3.2.1 Results under autocorrelation

We focus on how the extension to a five-state, autocorrelated shock model affects optimal management, expected welfare and fishery closures. We solve for the optimal escapement policies when autocorrelation is and is not present. We then assess the performance of these two policies and cost functions over simulations in which shocks are indeed autocorrelated. We use 5,000 simulations of 70 periods in which the first 20 periods are discarded for burn-in. Simulations are started at uniformly random points in the state space. We consider unit harvest cost functions that are density-dependent and density-independent. For simplicity, we refer to these two cases as “dependent” and “independent”, respectively. We also consider both the base growth model and critical depensation growth model. Overall, against a backdrop of autocorrelation, we are interested in the performance of the autocorrelation-savvy manager (relative to an autocorrelation-naive manager) and how this depends on the growth model and cost function.

Previewing welfare results, in the dependent case we find that the expected profit gain from autocorrelation-savvy management (over autocorrelation-naive) is either modest or almost zero: the mean profit (across simulations and over time) increased by 0.2%-4.5%, depending on the growth model. However, we find that the expected profit gain in the independent case is substantial at 7.1%-10%. We also find that the autocorrelation-savvy manager does a much better job of avoiding fishery closure, again especially in the independent case. Below we present results for this independent case. We provide parallel results for the dependent case in the appendix. We focus on results for the base growth function (logistic), except where noted. At the end of this section we discuss in detail the welfare results introduced above and provide intuition for the impact of the cost function, which drives the biggest differences.

In Figure 6 we present the optimal escapement policy as a function of the stock with autocorrelated shocks ($\rho = 0.95$, right) and without ($\rho = 0$, left). We plot cases given shock levels (z^*_t) are at their mean (black solid line) and in which various shocks are at their minimum or maximum levels (while remaining shocks are at their mean). Finally, we depict maximum and minimum escapement cases in which all shock levels are at an extreme (high or low) level. In both harvest cost function cases the constant escapement policy found by Reed (1979) and others holds: as long as some harvest occurs, escapement functions are flat (see appendix Figure 10 for the dependent case).

In Figure 6, under no autocorrelation (left panel) the policy function depends only on the stock (x) and economic shock levels. Here the policy is not a function of biological shocks—they are already incorporated into x and provide no information about next period’s state. Under no autocorrelation, current shock levels do not inform future shock levels and therefore do not effect expected future

14 In their respective single-shock variable models, Spencer (1997) uses $\rho = 0.6$ and Walters and Parma (1996) consider $\rho \in (0, .3, .8)$. Walters and Parma use a tighter normal distribution for shocks (variance of 0.05) but without evident truncation.

15 Sethi et al. (2005) find non-constant escapement induced by measurement uncertainty in the fish stock. In their case this is expected since the measurement shock is multiplicative with respect to the current stock, generating a marginal opportunity cost of harvest curve that shifts depending on the current stock level. No such mechanism for a shifting marginal opportunity cost of harvest curve is present in our setting.
Figure 6: Optimal escapement as a function of the stock \(x \) for various shock levels without autocorrelation (\(\rho = 0 \), left) and with autocorrelation (\(\rho = 0.95 \), right). For each curve all shock levels are at their expected level (\(z_i^* = 1 \)) except for the shock(s) labeled. Shock levels for the minimum escapement and maximum escapement cases ("\(\min \text{ esc} \)", "\(\max \text{ esc} \)") were set to those levels that minimized or maximized escapement levels for medium and high stock levels. Harvest cost is density-independent.

values. In contrast, under autocorrelation (right panel) current shock levels inform future shock levels and thus have an effect on value and optimal management.

As expected, escapement is high when shock levels result in a low price and high harvest cost (with and without autocorrelation). Escapement is also relatively high when the carrying capacity is high and the growth rate low. Overall, shock levels drive wide variation in optimal escapement and this is greater in the autocorrelation case, which is expected since policy is now sensitive to economic and biological shock levels: in the autocorrelation case, optimal escapement can vary by more than a factor of five depending on the shock level (e.g. from below 20 to above 100 at high stock levels).

Comparing the relative impact of various shock levels, optimal escapement is more sensitive to price shock levels (\(z_p^* \)) than cost (\(z_c^* \)) in part because shocks enter multiplicatively against a price parameter that is larger than the cost parameter (\(p > c \)). Policy is also much more sensitive to the shock level for carrying capacity (\(z_K^* \)) than for growth rate (\(z_R^* \)). This might be expected given the growth rate affects only new recruits while the carrying capacity can affect both (when stock exceeds the carrying capacity).

In Figure 7, given autocorrelation we show how optimal escapement share varies (color bar) with biological shock levels (axes) for various stocks (panels). As noted above, optimal escapement is higher given high carrying capacity (\(z_K^* \)) and low growth rate (\(z_R^* \)). Accounting for multiple sources of autocorrelated uncertainty provides here a more nuanced result than obtained by Parma (1990). In her analysis, Parma finds that “escapements are raised when favorable conditions are anticipated and they are lowered when poor environments are expected”. We find a similar result with respect to the carrying capacity. But in the case of the growth rate, escapement is higher under unfavorable conditions.
Figure 7: Optimal escapement share (color bar) as a function of biological shock levels (z^K, z^R) given autocorrelation ($\rho = 0.95$) and stock levels (x) varying from low (top left plot) to high (bottom right plot). Optimal escapement share without autocorrelation ($\rho = 0$) appears in the title of each panel ($A^*_0 = 1$). The dashed white line is the isocline at which $A^*_0 = 0.95 = A^*_0$. Harvest cost is density-independent.

To illustrate the potential policy error from ignoring autocorrelation, we show the isocline where the (fixed) autocorrelation-naive policy ($A^*_{\rho=0}$) is equal to the autocorrelation-savvy policy. $A^*_{\rho=0}$ is reported in the subtitle to each subplot. The difference in optimal escapement share is small when the shock levels are near their mean ($z^i = 1$) and large when z^K is high and z^R is low (or vice versa). Thus we would expect gains for an autocorrelation-savvy manager (relative to naive) to be high when z^K and z^R converge strongly from each other or from their mean.

In Figure 8 we show for the autocorrelation-savvy manager how optimal escapement share varies with economic shock levels (axes) for various stocks (panels). Generally (as noted above) escapement share increases as economic conditions are less favorable, as z^p falls and z^c increases. Considering a harvest optimization problem with (uncorrelated) price and stock uncertainty Hanson and Ryan (1998) find that price volatility has only a modest impact on the optimal policy. In contrast we find that price fluctuations have a large impact on optimal escapement under no autocorrelation (Figure 6, left panel). Under autocorrelation (right panel), the role of z^p attenuates but is still quite substantial especially for low prices. These observations hold also for the dependent case (Figure 10).
Figure 8: Optimal escapement share (color bar) as a function of economic shock levels \((z^p, z^c)\) with autocorrelation \((\rho = 0.95)\) and stock levels \((x)\) varying from low (top left plot) to high (bottom right plot). Harvest cost is density-independent.
Results in Figures 7 and 8 show that the optimal policy response to z^K depends on z^R and similarly the optimal response to z^p depends on z^e. This also holds for the dependent case (see appendix). It also holds across each shock level pair, such as z^K and z^p (not shown). Thus if autocorrelation in present in more than one parameter shock level (as modeled here) then all should be accounted for since the optimal response to one shock level depends on the others.

In Table 1 we report summary statistics from 5,000 Monte Carlo simulations of 70 periods where the first 20 periods are discarded for burn-in. In each simulation, paths for each shock level z^i_t are produced based on a uniformly random starting point and assuming autocorrelation ($\rho = 0.95$). Then the autocorrelation-savvy (ρ_{95}) and autocorrelation-naive (ρ_0) policies are applied separately but in parallel against the same series of starting points and shock levels. We examine several outcomes: escapement share, stock, profit, harvest and closure of the fishery. We consider both the base and critical depensation growth functions. We first take the mean (over the final 50 periods) for each simulation and then, across simulations, report the mean and 90% confidence interval (in parentheses). We also show the percentage difference in the mean statistic.

On average, the escapement share and stock decrease while the profit and harvest increase under the autocorrelation-savvy manager. This holds for both growth models and both cost functions considered (see Table 4). In Figure 9 we show histograms of these outcomes from Table 1 for the base growth model, illustrating the spread of mean simulated outcomes. Each “observation” in the set summarized in a histogram is the mean from a given simulation. Dark shading represents outcomes for the autocorrelation-naive manager (ρ_0) and white represents outcomes for the autocorrelation-savvy manager ($\rho_{0.95}$). Muted shading appears when they overlap. In the top left panel we see that for the autocorrelation-savvy manager, the distribution of escapement shares narrows and shifts lower. Correspondingly, the distribution of harvest levels also narrows and increases (bottom left). The distribution of stock levels narrows and shifts down (top right). Finally, in the bottom right
Figure 9: Comparison of simulation outcome frequencies under autocorrelation and density-independent harvest cost when escapement policy applied either accounts for autocorrelation (p_{95}) or does not (p_0). Growth occurs either according the base model (simple logistic growth). Results are based on 5,000 simulations of 70 periods in which the first 20 periods are discarded for burn-in.

we present results for enhancing profit via autocorrelation-savvy management. Gains come from both increasing returns during lean years (shrinking the left-hand tail) and from exploiting boom years (expanding right-hand tail).

The distribution of outcomes in the dependent case (for the base growth model) are qualitatively similar. The only key exception is that profit gains for the savvy manager in the dependent case are much smaller. In the base growth model case they are essentially zero (see Table 4). This occurs despite the fact that harvest is substantially higher (14.5%) for the savvy versus naive manager. We do not expect profit gains to be as high as harvest gains because the auto-correlation savvy manager is fishing to a lower stock level with higher density-dependent unit harvest costs (relative to the naive manager). Still, in the dependent case the near zero profit gains for the base growth model and modest gains for the critical depensation model (4.5%) present a puzzle that leads to a central insight in our analysis: gains to autocorrelation-savvy management are substantial in the independent case but negligible in the dependent case because differences in the cost structure have implications for (1) avoiding instances of errant high harvest for the naive manager, and (2) facilitating instances of ideal high harvest for the savvy manager.

First, we consider the naive manager’s capacity to avoid instances of errant high harvest. In the dependent case, increasing marginal harvest cost (as the stock is fished down) provides an “economic brake”, saving (to some degree) the naive manager from errantly over-harvesting the stock when economic shock levels suggest high harvest (high z^P and low z^C) but in addition
expected biological shock levels (naively ignored) suggest moderation. In the independent case there is no such economic brake impeding errant high harvest by the naive manager. Figure 6 shows that aggressive harvest (low escapement) from realizing the lowest cost \(z^c \) or highest price \(z^p \) shock levels for the naive manager (left panel) is not ideal—this response is tempered for the savvy manager (right panel). These results show that an autocorrelation-naive manager can over-respond to economic shocks—they may believe they are optimally responding to idiosyncratic shocks when they are actually errantly driving down the stock (given the ignored autocorrelated shock levels to come). This effect is also stronger without the “economic brake” of stock-dependent cost serving to limit harvest.

Second, we consider how cost functions differentially allow instances of ideal high harvest for the savvy manager. In the dependent case, increasing marginal harvest cost (in the stock) reduces the opportunity for the savvy manager to set an aggressive harvest level when shock levels might suggest it. In contrast, in the independent case, the savvy manager has the opportunity to aggressively draw down the stock when prudent (e.g. given low \(z^K \) and high \(z^p \)). For the savvy manager, more aggressive harvest in the independent case—specifically when \(z^K \) is low—can be seen in comparing the right panels \((\rho_0)\) of Figures 6 and 10.

As a final comparison, we consider differences in the propensity for fishery closure, which we take to be the case when the escapement share exceeds 99.9%. We report the percentage of periods the fishery is closed in the final line of Table 1 for the independent case and appendix Table 4 for the dependent case. In all scenarios autocorrelation-savvy management results in a substantially lower closure percentage. In the independent case and base growth model, the savvy manager achieves exceedingly rare closures (0.3% of periods) while ignoring autocorrelation leads to fishery closure in 4.4% of periods. Under critical depensation naive policy leads to a closure rate three times higher than the savvy manager (10.4% versus 3.5%). In the dependent case closure is more frequent overall (4-14%) but savvy management reduces the rate by approximately 1/3 to 2/3. We have not imposed an explicit cost of closure in our objective function (other than the effect on fishery profit). However, an average rate of fishery closure that is four to eight percentage points higher (under naive management) would likely constitute a substantial welfare impact. Our profit comparison also ignores the welfare benefits to consumers of harvest that increases under the savvy policy by about 3-15%, depending on the case.

4 Discussion

The OECD has argued that figuring out “how uncertainty and lack of information should be taken into account” is among the short list of most important issues to work on in fisheries (OECD, 2012). However, modeling such ecosystem realities can generate “overwhelming complexities very rapidly” (Clark and Munro, 2017). Standard approaches for solving dynamic resource optimization models, such as value function iteration (VFI) have limited capacity to handle increasingly detailed problems.
Involving a large number of states and complex sources of multiple uncertainty. Another drawback is that they do not integrate conveniently with the prevalent use of Monte Carlo simulation analysis in the natural sciences. In contrast, FDP incorporates a larger set of continuous states and complex sources of stochasticity with ease in a familiar forward simulation framework. When uncertainty takes the form of stochastic draws observed between actions, FDP eliminates the need for numerical integration (replaced by repeated simulation).

We add to the broader FDP literature with an extension to nonparametric methods. Parametric approximation of the value function can lead to instabilities in the solution procedure and large error in the policy function. We implement a nonparametric approach to capture the value function without imposing a functional form. The flexible approach is stable and adapts to convex-concave dynamics (critical depensation growth model) and cost function alternatives with relative ease. Our code implementing FDP for a simple resource model is easily adapted to the dynamics and uncertainties of other systems. Using a standard fishery management model under uncertainty we show that FDP is reliable and accurate. Expanding on our simple base model we show that FDP readily handles five continuous states and four sources of uncertainty.

In addition to illustrating a new optimization tool to resource economics, we contribute to the understanding of fishery management under uncertainty. We consider uncertainty in price, cost, carrying capacity and growth rate. In contrast to the typical assumption of idiosyncratic shocks we allow for shock levels that are autocorrelated over time. In our base model we find that policy is sensitive to all four shocks: escapement increases under high carrying capacity, low growth rate, low price and high cost. Policy is much more sensitive to changes in carrying capacity than other variables. These findings qualify insights from Sethi et al. (2005, p. 317) who conclude that “growth...uncertainties have only a small effect on optimal policy (and) profits...even when uncertainties are high”. We find that shocks to growth function that are autocorrelated have a strong impact on profit and the optimal escapement policy, which can vary by a factor of three.

We find that accounting for autocorrelation leads to large differences in response to observed shocks. For example, in our central case (density-independent harvest cost and base growth model) an autocorrelation-naive manager makes big adjustments in escapement due to price and cost fluctuations (exceeding +/-50% in some cases). In contrast a savvy manager with knowledge that shock levels will somewhat persist makes much smaller adjustments, less than half as big. Overall, both biological and economic shock levels are important: optimal savvy policy is most sensitive to carrying capacity shock levels (in both directions) and low price shock levels. We find that accounting for multiple autocorrelation simultaneously is important since (1) the optimal response to one shock level depends on each of the others, and (2) results from the literature on a single autocorrelated shock no longer necessarily hold when additional shocks are considered. Illustrating the latter result, Parma (1990) finds that accounting for autocorrelation leads to raised escapement when favorable conditions are anticipated. In contrast, we find escapement is higher when the carrying capacity is favorable and the growth rate unfavorable.

We also find that rents from autocorrelation-savvy management strongly depend on harvest cost structure. When harvest costs are density-dependent, savvy policy generates no or modest profit gains (relative to a naive manager). When harvest costs are density-independent, savvy policy leads to substantial profit gains. Driving this result is the fact that differences in harvest cost structure influence the degree to which (1) a naive manager avoids instances of errant high harvest; and (2) a savvy manager takes advantage of conditions for ideal high harvest.
Finally, we find that accounting for autocorrelation is important for avoiding fishery closures: the savvy manager substantially reduces the rate of closures in all cases. A naive manager, who believes they are optimally responding to idiosyncratic shocks, can over-respond to economic shocks, errantly driving down the stock when not ideal, especially without the “economic brake” of stock-dependent cost.

Two other important sources of uncertainty include state measurement error (imperfect knowledge of the state) and implementation error (imperfect achievement of the control) (Sethi et al., 2005). FDP can be used under these types of uncertainty but the need for numerical integration is re-introduced. This is because the state achieved after the control is chosen is no longer deterministic. Even so, FDP simplifies the treatment of multiple uncertainty—shocks like those included in our model are easily addressed with simulation, making it easier to incorporate remaining forms of uncertainty through integration.

Outside of economics, in recent decades the use of simulation models to examine environmental systems has followed the expansion of computing technology and interest in complex processes (Peck, 2001). Natural science research has a long history of using simulations to understand the properties of diverse applications such as fisheries, forestry, agriculture and climate change (Petrovskii and Petrovskaya, 2012). Within the economics literature, Moxnes (2003) argues that simulation models are appealingly familiar to decision makers. However, common economic optimization techniques used in these systems are not structured to take advantage of forward simulation. Iterative techniques like VFI take an approach that is either explicitly or stylistically consistent with backward induction (for finite-horizon and infinite horizon problems, respectively).19 Powell (2011, p. 233) argues that FDP should be seen as a “powerful tool for the simulation community” due to the similarity in “culture”. This suggests that FDP holds strong promise for facilitating necessary collaboration between natural scientists and economists to tackle rich bioeconomic problems.

19Rust (1997) used Monte Carlo sampling to handle integration in estimating the value function but within an otherwise standard VFI approach.
References

Appendix

A Additional bioeconomic parameters.

We present bioeconomic model parameters in Table 2 followed by FDP and VFI solution parameters in Table 3.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>p price per unit harvest</td>
<td>1</td>
<td>Sethi et al. (2005)</td>
</tr>
<tr>
<td>c harvest cost coefficient, density-dependent (independent)</td>
<td>0.75 (35)</td>
<td>Assuming costs are typically 1/3 of revenues</td>
</tr>
<tr>
<td>β discount factor</td>
<td>1/(1.05)</td>
<td>Sethi et al. (2005)</td>
</tr>
<tr>
<td>R intrinsic growth rate</td>
<td>1</td>
<td>Sethi et al. (2005)</td>
</tr>
<tr>
<td>K carrying capacity</td>
<td>100</td>
<td>Sethi et al. (2005)</td>
</tr>
<tr>
<td>K_0 critical population level</td>
<td>25</td>
<td>Conrad (2010)</td>
</tr>
<tr>
<td>shock bounds</td>
<td>$z_t \in [0.5, 1.5]$</td>
<td>Sethi et al. (2005)</td>
</tr>
<tr>
<td>μ shock mean</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>σ^2 shock variance</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Bioeconomic model parameters with sources (blank = assumption).

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Simulation time horizon</td>
<td>5</td>
</tr>
<tr>
<td>\bar{m} Number of simulations in a block between regressions</td>
<td>792 (1584)</td>
</tr>
<tr>
<td>${\delta_{\text{min}}, \delta_{\text{max}}}$ Step size bounds</td>
<td>${1 \times 10^{-3}, 0.85}$</td>
</tr>
<tr>
<td>γ Rate of step size decline</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>k Number of regression updates considered in convergence metric</td>
<td>10</td>
</tr>
<tr>
<td>FDP stopping tolerance for convergence</td>
<td>$4 \times 10^{-3} (0.017)$</td>
</tr>
<tr>
<td>VFI stopping tolerance for convergence</td>
<td>1×10^{-4}</td>
</tr>
</tbody>
</table>

Table 3: Illustrative FDP and VFI solution parameters for results presented in Figure 4. When parameters used for critical depensation model differ, they are provided in parentheses.

B Additional FDP specifications

For the declining step size function, we use

$$\delta_t = \max\{\delta_{\text{max}} \exp(-\gamma(m_{\text{tot}} - m_{\text{dec}})), \delta_{\text{min}}\},$$

where δ_{max} is the initial weight given to new information, m_{dec} is the simulation counter value when the switch to the declining function occurs, m_{tot} is the simulation counter, γ is the rate at which the weight decays as simulations accrue, and δ_{min} is the step size lower bound.20

20 As our specific trigger to switch to a declining step size, we consider the mean absolute deviation in the value function estimate between updates (across nodes in the state space), i.e. the mean of the vector $|V^k(\bar{n}) - V^{k-1}(\bar{n})|$.

27
As a practical matter we discretize the action space, using a vector of possible harvest levels. However, because we face no memory constraints—as we would from large, multi-dimensional arrays in a value or policy function iteration approach—we can use an exceedingly dense discretization (e.g. 1,000 nodes). Additional code and computing time would enable an explicitly continuous action space but would provide no additional utility over such a dense discretization. In step 2a of the FDP algorithm an initial guess for the value function must be set before the first block of simulations and nonparametric regression has been run. We use a simple linear function for this initial guess.

C Additional results under autocorrelation with density-dependent harvest cost

Paralleling figures and tables for density-independent harvest cost (in the results under autocorrelation section of the main text) in this section we present results for density-dependent harvest cost.

as a percentage of the mean of the value estimate vector V^{k-1}. The switch is made once the rolling average of this metric over the last 6 updates falls below 0.275%. This threshold is identified by running the FDP algorithm and setting this trigger at the point the metric stops falling, which captures the point at which the value function estimate is no longer moving consistently to higher or lower values.
Table 4: Summary statistics for 5,000 Monte Carlo simulations given high autocorrelation ($\rho = 0.95$) in shock levels and density-dependent harvest cost. Escapement policy applied either accounts for autocorrelation (ρ_{95}) or does not (ρ_0). Growth occurs either according the base model (simple logistic growth) or with critical depensation. From each simulation mean (taken over time), reported statistics include the mean and 90% confidence intervals (in parentheses) across simulations. The difference (percentage) reflects the relative change in expected outcomes due to shift from ignoring to accounting for autocorrelation.

<table>
<thead>
<tr>
<th>Escapement share</th>
<th>Base</th>
<th>Critical depensation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρ_0</td>
<td>ρ_{95}</td>
</tr>
<tr>
<td></td>
<td>(0.55, 1)</td>
<td>(0.55, 0.91)</td>
</tr>
<tr>
<td>Stock</td>
<td>59.0</td>
<td>51.9</td>
</tr>
<tr>
<td>(36.6, 82.2)</td>
<td>(32.2, 77.1)</td>
<td></td>
</tr>
<tr>
<td>Profit</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>(0, 27.3)</td>
<td>(0.3, 27.8)</td>
<td></td>
</tr>
<tr>
<td>Harvest</td>
<td>20.1</td>
<td>23.0</td>
</tr>
<tr>
<td>(0, 41.5)</td>
<td>(5.3, 41.7)</td>
<td></td>
</tr>
<tr>
<td>Closure freq.</td>
<td>11.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Figure 11: Optimal escapement share (color bar) as a function of biological shock levels (z^K, z^R) with autocorrelation ($\rho = 0.95$), base growth model, density-dependent harvest cost, and stock levels (x) varying from low (top left plot) to high (bottom right plot). Optimal escapement share for the no serial correlation case ($\rho = 0$) appears in the title of each figure ($A^*_{\rho=0}$). The dashed white line is the isocline at which $A^*_{\rho=0.95} = A^*_{\rho=0}$, except where $A^*_{\rho=0}$ is close to 1.
D Additional results for policy functions under no autocorrelation

In this section we present additional escapement policy function results under no autocorrelation with density-independent harvest cost (Figure 11) and density-dependent harvest cost (Figure 10).
Figure 13: Optimal escapement share (color bar) as a function of economic shock levels \((z^p, z^c)\) given no autocorrelation \((\rho = 0)\), base growth model, density-independent harvest cost, and stock levels \((x)\) varying from low (top left plot) to high (bottom right plot).

Figure 14: Optimal escapement share (color bar) as a function of economic shock levels \((z^p, z^c)\) given no autocorrelation \((\rho = 0)\), base growth model, density-dependent harvest cost, and stock levels \((x)\) varying from low (top left plot) to high (bottom right plot).