We will use the following notation:
$N B$: net benefit, equal to benefits minus costs: $B-C$ t : the year $N B_{t}$: the net benefit "arriving" in year t
$P V$: present value
$F V$: future value
r : discount rate
d : discount weight

We will assume that values are realized at the end of any given year. We say that a value realized immediately (the present) occurs in year zero $(t=0)$. A value that occurs in year $1(t=1)$ is realized one year from today.

Our workhorse discounting formula for the present value of a future value $F V_{t}$ (for example $F V_{t}=B_{t}, F V_{t}=C_{t}$ or $F V_{t}=N B_{t}=B_{t}-C_{t}$) from the present through some future time period (T) is:

$$
\begin{aligned}
P V & =\sum_{t=0}^{T} d_{t} F V_{t}=d_{0} F V_{0}+d_{1} F V_{1}+\ldots+d_{T} F V_{T} \\
& =\sum_{t=0}^{T} \frac{1}{(1+r)^{t}} F V_{t},
\end{aligned}
$$

where $d_{t}=\frac{1}{(1+r)^{t}}$ is a "discounting weight" (though that term isn't used commonly). The specific weight used to discount a future value over just one period is often called the "discount factor": $d_{1}=\frac{1}{(1+r)^{1}}$. The following plot shows how the discounting weight placed on a future value declines as t increases, i.e. the longer the delay until the future value is realized.

Discount weight: $d=1 /(1+r)^{t}$, with discount rate $r=0.03$

Because (i) the present value is a sum of discounted future values, and (ii) net benefits are equal to the difference between benefits and costs, the PVNB can be broken into pieces when needed:

$$
P V N B=\sum_{t=0}^{T} \frac{N B_{t}}{(1+r)^{t}}=\sum_{t=0}^{T} \frac{\left(B_{t}-C_{t}\right)}{(1+r)^{t}}=\sum_{t=0}^{T}\left(\frac{B_{t}}{(1+r)^{t}}-\frac{C_{t}}{(1+r)^{t}}\right)=\sum_{t=0}^{T} \frac{B_{t}}{(1+r)^{t}}-\sum_{t=0}^{T} \frac{C_{t}}{(1+r)^{t}}=P V B-P V C
$$

Thus, $P V N B$ can be calculated by assessing the present value of benefits ($P V B$) and the present value of costs $(P V C)$ separately and then recombining (subtracting $P V C$ from $P V B$).

Three key cases/formulas:

1. Present value of a single payoff, $F V_{t}$, arriving just once in some future period t :

$$
\begin{equation*}
P V=F V_{t}\left[\frac{1}{(1+r)^{t}}\right] \tag{1}
\end{equation*}
$$

2. Present value of a stream of payoffs of equal value $\overline{F V}$ (for example $B_{t}=\overline{F V}$, or $N B_{t}=\overline{F V}$ for all periods) starting at $t=1$,
a. over an infinite time horizon (forever):

$$
\begin{align*}
& \begin{array}{cccccc}
\\
\stackrel{\rightharpoonup}{F V} & \overline{F V} \\
\hdashline & 1 & 2 & \cdots & \overline{F V} & \overline{F V} \\
\hline & 1 & \overline{F V} \\
\hline
\end{array} \\
& P V=\sum_{t=1}^{\infty} \frac{\overline{F V}}{(1+r)^{t}}=\frac{\overline{F V}}{r} . \tag{2}
\end{align*}
$$

b. over a finite time horizon (T):

$$
\begin{align*}
& P V=\frac{\overline{F V}}{r}-\frac{\overline{F V}}{r(1+r)^{T}}=\frac{\overline{F V}}{r}\left(1-\frac{1}{(1+r)^{T}}\right) . \tag{3}
\end{align*}
$$

