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Abstract. Discussions on the use of marine reserves (no-take zones) and, more generally,
spatial management of fisheries are, for the most part, devoid of analyses that consider the
ecological and economic effects simultaneously. To fill this gap, we develop a two-patch
ecological-economic model to investigate the effects of spatial management on fishery profits.
Because the fishery effects of spatial management depend critically on the nature of the
ecological connectivity, our model includes both juvenile and adult movement, with density
dependence in settlement differentiating the two types of dispersal. Rather than imposing a
reserve on our system and measuring its effect on profits, we ask: ‘‘When does setting catch
levels to maximize system-wide profits imply that a reserve should be created?’’ Closing areas
to fishing is an economically optimal solution when the value derived from spillover from the
reserve outweighs the value of fishing in the patch. The condition, while simple to state in
summary form, is complex to interpret because it depends on the settlement success of the
dispersing organisms, the nature of the costs of the fishing, the economic and ecological
heterogeneity of the system, the discount rate, and growth characteristics of the fish
population. The condition is more likely to be satisfied when the closed area is a net exporter
of biomass and has higher costs of fishing and for fish populations with density-independent
settlement (‘‘adult movement’’) than with density-dependent settlement (‘‘larval dispersal’’).
Rather surprisingly, there are circumstances whereby closing low biological productivity areas,
and even sometimes low cost areas to fish, can result in greater fishing profits than when both
areas are open to fishing.

Key words: bioeconomic; fish movement; fishery management; marine reserve; optimal harvest; spatial
dynamics; spatial management.

INTRODUCTION

Notable declines in marine resource stocks, along with

a growing marine conservation movement, have promp-

ted debate over how to manage ocean ecosystems

sustainably. Many marine conservationists and scientists

are calling for increasing the scale and scope of fishery

closures or no-take marine reserves. Some of the

potential benefits include conservation of biodiversity,

protecting sources of larvae and biomass, increased

levels of biomass, increased catches, and providing a

hedge against management failures (Carr and Reed

1993, Allison et al. 1998, National Research Council

2001, Botsford et al. 2003, Gerber et al. 2003). To date,

the strongest empirical evidence exists for the effects

within the reserves, such as increased levels of fish

populations, larger individuals, and improvements in

species richness (Halpern 2003).

Commercial and recreational fishermen, on the other

hand, fear the immediate effects on their livelihoods and

the lost access to particular fishing grounds in the future.

As the recent deliberations around siting marine reserves

off of California (Channel Islands) and Florida (Tortu-

gas) illustrate, these concerns generate passionate

political resistance, suggesting future compromises over

the location, size, and number of marine reserves are

inevitable (Bernstein et al. 2004). Developing models

that illuminate the economic and ecological trade-offs

involved in siting marine reserves is, therefore, an

important task that might reduce conflict over conten-

tious sites, avoid some transaction costs, and avoid

disenfranchising various groups in the negotiation

process.

The theoretical bioeconomic research on the fishery

management effects of marine reserves has focused on

measuring their effects compared to the baseline of open

access (e.g., Beverton and Holt 1957, Hannesson 1998,

Pezzy et al. 2000, Sanchirico and Wilen 2001, Rodwell et

al. 2002, Sanchirico 2005), regulated open access (e.g.,

Hastings and Botsford 1999, Anderson 2002, Hilborn et

al. 2006), or limited-entry conditions (e.g., Holland and

Brazee 1996, Sanchirico and Wilen 2002, Sanchirico

2004). Under open-access conditions, a typical analysis

of a reserve consists of comparing system-wide catch
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and biomass levels before and after the reserve is

created. For example, Sanchirico and Wilen (2001)

identify circumstances for which dispersal benefits

(spillover to open areas) due to adult movements are

greater than the opportunity cost of closing the area

(lost catch), leading to net aggregate catch increases.

In this paper, we set up a framework for identifying

potential scenarios for which the positive ecological

benefits within reserves can be obtained at the same time

that fisheries profits are actually increased. Our stylized

analysis asks important practical questions. Under what

biological and economic conditions would closing off

areas to fishing lead to greater fishing profits than when

all areas are open to fishing? How do density-dependent

or density-independent settlement processes affect the

likelihood that closures emerge as an economically

optimal solution? Gerber et al. (2003) raised similar

questions when discussing the efficacy of marine

reserves.

To address these questions, we develop a spatially

explicit bioeconomic optimal control model of two

patches. In this model, the regulator chooses the catch

rate in the two patches and we investigate conditions

under which a marine reserve (setting the catch to zero

in one patch) is an economically optimal solution. Fig. 1

illustrates the spectrum of spatial catch rates that we

consider in our analysis. Here, an economically optimal

solution is one that maximizes the present discounted

value (allowing for future profits to be weighted relative

to current profits, see Clark [1990]) from the stream of

fishery profits from the entire metapopulation.

This paper contributes to the literature in three

important ways. First, we focus on the economic

profitability of a fishery, which is the primary issue of

relevance to fishermen and fishing communities and the

metric that drives resistance and political opposition to

reserves. Profits may not be proportionate to catch when

landed quality varies across patches or when fishing

costs depend on spatial factors, such as local abundance

and distance to and from the fishing grounds. And, even

though catch levels are a measure of interest to gauging

the biological health and sustainability of a system,

political disagreements over closures will hinge on the

economic and ecological effects on the systems. Analyses

investigating the effects of reserves in limited-entry

settings also consider the effects of reserves on profits

(e.g., Holland and Brazee 1996, Sanchirico and Wilen

2002, Sanchirico 2004).

Our second contribution is to exhaustively character-

ize the conditions for which setting the catch rate to zero

in a particular area is an economically optimal policy.

We ask, in particular, under what conditions do system-

wide fishery returns increase by moving from point A to

point B in Fig. 1? No-take zones in our analysis,

therefore, are boundary solutions to the more general

problem of finding patch-specific optimal catch rates.

When point B maximizes fishery profits, no-take zones

are the optimal policy relative to all other policies that

regulate catch totals. As such, our analysis is more

general than the previous literature.

Our third contribution is that we allow for spatial

heterogeneity in both economic and ecological param-

eters. Economic conditions are likely to differ across

space due to factors such as closeness to port and/or

bottom conditions (rocky nearshore bottoms vs. off-

shore sandy shoals). Ecological conditions including

growth and mortality and dispersal rates and directions

are also likely to differ across space in a patchy system.

Under various assumptions incorporating spatial heter-

ogeneity, we analyze cases where the patches are linked

by dispersal that is subject to density-dependent settle-

ment (here thought of as juvenile or larvae) and density-

independent (adult) settlement processes.

We highlight the importance and role of ecological

connectivity by comparing with the benchmark case of

optimal catch rates when the patches are biologically

independent (not connected by dispersal). When there is

no dispersal between the patches, relative profits and

optimal catch rates are a function of the biological and

economic conditions associated with each independent

patch. Low-cost patches will be more profitable, and

likely to be more heavily exploited in an economically

optimal policy. Then we introduce different types of

connectivity via assumptions on the dispersal parame-

ters, such as directional movement (e.g., Tuck and

Possingham 2000, Crowder et al. 2000), random move-

ments based on relative densities, and perfect and

imperfect mixing of ‘‘juvenile’’ populations (e.g., Rod-

well et al. 2002, Sanchirico 2004). Across these different

FIG. 1. Management of spatial catch rates with no-take
areas as boundary solutions. Our analysis considers all possible
catch rates (hi for i ¼ 1, 2) including the cases where the catch
rates are set equal to each other and when one or both of the
catch rates are set to zero. The latter case identifies when no-
take zones are a part of the economically optimal spatial
management regime (and are a boundary solution). We ask
what parametric and structural circumstances put us at points
like B instead of points like A.
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systems, we investigate conditions under which the

economically optimal fishing policy switches from fish-

ing in both patches (point A in Fig. 1) to closing one of

the patches to fishing (point B in Fig. 1).

In a closely related paper, Neubert (2003) investigates

the issue of how to manage a spatially continuous

dynamic system with dispersal, although he focuses on

maximizing system-wide physical yield. He reaches the

conclusion that the spatial pattern of catch rates that

optimizes system-wide yield contains areas that are

completely closed, as a necessary condition for opti-

mality. Other related papers by Tuck and Possingham

(1994, 2000) assume the reserve is a source, patches are

homogenous, and the dispersal process exhibits a pre-

dispersal density-dependent process. Although we do

not model this specific dispersal mechanism, Tuck and

Possingham’s (1994, 2000) results are qualitatively

nested in ours.

While the ecological and economic trade-offs that

emerge in the economically optimal solution are com-

plex and varied, some patterns do emerge from our

analysis. In accordance with previous studies, we find

circumstances where point B in Fig. 1 is optimal (in the

literature this is denoted as a win–win situation). Also in

accord with earlier studies, we find that reserves are not

always part of an economically optimal solution so that

sometimes it is optimal to be at point A (interior

solution with positive catch rates in both patches).

Reserves are more likely to be part of the optimal

solution when the patch to be closed has higher fishing

costs and/or the patch is a strong net exporter of

biomass to the fished area. We also find that populations

with density-independent settlement in the dispersal

process are more likely to have closures as part of the

optimal solution than those with density-dependent

settlement larval.

Some surprising and counterintuitive results emerge

from our analysis. First, there exist circumstances for

which fishing profits are maximized when the patch with

the lower cost of fishing is closed. This occurs when the

strength of the spillover effect from the reserve is great

enough to outweigh the loss in profitability from closing

the lower cost patch. Second, closing the low rather than

the high biologically productive patch is more likely to

lead to an increase in fishery profits. This conclusion

runs counter to common advice that closing the high

biologically productive areas will directly benefit fisher-

men. Intuitively, this result stems from the fact that the

high biological productive patches are also the ones that

contribute a relatively larger share to the system-wide

profits.

In addition to finding conditions for which setting the

optimal catch rate to zero maximizes profit, our model

highlights the biological and economic importance of

ecological connectivity, density-independent and -de-

pendent settlement mechanisms, and spatial heteroge-

neity. While more specific models might be more realistic

for a particular marine species, our general model

illuminates qualitative properties of spatial and dynamic

economic-ecological systems—properties that improve

our understanding of how to manage more complex

systems (Hilborn et al. 2003). As such, our model can be

used to investigate other types of spatial management,

such as employing different intensities and types of uses

in a zonal system.

ECOLOGICAL MODEL

Our bioeconomic model treats space explicitly in the

form of two discrete patches; fish populations may

disperse between the patches via various mechanisms at

a variety of rates. Focusing on two discrete patches with

connectivity may seem restrictive, but, as in Hastings

and Botsford (2003), one can argue that such an

approach can approximate models with space treated

continuously. In models that treat space homogene-

ously, the distance between habitats is the only relevant

aspect of the location of the habitats in space. In a

patchy environment, however, it is easy to imagine that

reserve location, and not just relative position, is critical,

if the reserve is to be biologically and economically

optimal. Our framework is especially suited to inves-

tigate how patch or habitat heterogeneity interacts with

dispersal and connectivity to affect the potential benefits

from closures. Because we allow for population dynam-

ics in both patches, we do not impose the ‘‘scorched

earth’’ assumption, namely that all fish that leave the

reserve are harvested (see, for example, Hastings and

Botsford 1999). Our model, therefore, better mimics

actual systems, such as the recent system of reserves

established in the Channel Islands or the closed areas on

the Grand Banks.

Developing a realistic spatial model of a fish

population that is both general and simple enough to

make predictions is a difficult endeavor for a couple of

reasons. First, for many fish (reef fish for example), the

presence and strength of density dependence is uncertain

(Sale 1991 and Caley et al. 1996 as cited in Forrester and

Steele 2000) and likely to be scale and context dependent

(Steele 1997, Forrester and Steele 2000). Second, it is

difficult to justify any particular model relating the

number of spawners to recruits (e.g., Quinn and Deriso

1999) because recruitment can be so highly variable.

Furthermore, the classic models of fisheries (see review

in Quinn and Deriso 1999), such as the Beverton-Holt

model, have typically been formulated as discrete-time

models and therefore cannot be used to look at systems

with both ‘‘juvenile’’ dispersal and ‘‘adult’’ movement

during the year. Because adults can move into and out

of or between patches within a single year, and may or

may not be caught in different locations, one needs to

use a continuous-time model when accounting for adult

movement unless the adult movement only occurs

during a specific time frame. Third, the movement of

individuals among patches is still a topic about which far

too little is known (e.g., Shanks et al. 2003) and
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movement rates appear to be highly variable among

even closely related species.

One aspect of the movement of fish and invertebrates

that is becoming better known is the degree to which

individuals are essentially retained in their natal habitat

(e.g., Swearer et al. 2002, Thorrold et al. 2002, Warner

and Cowen 2002). Although this is still a difficult issue,

this partial knowledge of the degree of local retention

can be used within the context of heuristic models to

understand how connectivity may influence optimal

fishery policy. In particular, if we consider a model with

just two patches, knowledge of the degree of local

retention can be used to begin to get parameter values

for the dispersal rates in this kind of model.

Given our current limited knowledge, models and

results that derive general qualitative principles are

likely to be of the most use, since we simply do not have

the data to make more detailed predictions, or to justify

the use of particular models. While there are certainly

complexities in marine systems that are overly simplified

in our model or fall outside its scope, our relatively

simple structure is justified by appealing to Occam’s

razor and starting with the simplest model which still

captures fundamental forces.

We begin with two habitats or patches with popula-

tion densities x1 and x2. The populations are assumed to

grow at rates F1(x1, x2) and F2(x1, x2), which depend on

the population densities in both areas. In particular, the

population dynamics within each patch are

dx1

dt
¼ F1ðx1; x2Þ � h1

¼ ðA1x1 þ B1x2Þð1� x1Þ þ d12x2 � d11x1 � h1 ð1Þ

dx2

dt
¼ F2ðx1; x2Þ � h2

¼ ðA2x2 þ B2x1Þð1� x2Þ þ d21x1 � d22x2 � h2 ð2Þ

where hi is the catch level in patch i.

For a single isolated patch (for example, let x2¼ 0 in

Eq. 1), the population density x1 increases logistically

with a growth rate A1 but loses individuals at a density-

independent per-capita rate d11. When a second patch is

included in the dynamics, we consider two possibilities

for fish from the second patch settling into the first

patch. First, the settlement rate may be a function of the

density in the first patch (which is denoted by the term

B1x2(1 � x1)). With this formulation, dispersing

organisms from patch x2 will have the largest influence

on patch x1’s growth when the population in x1 is small

( []F1(x1, x2)]/]x2 ¼ b1(1 � x1) þ d12). Second, the

settlement rate may be independent of the density in the

first patch (denoted by the term d12x2). These two

mechanisms can be thought of as juvenile and adult

settlement, respectively, with adult survivorship as-

sumed unaffected by density dependent mechanisms.

This characterization is likely when the species have

higher mortality rates due to predation at younger life

stages.

While this model is very general, there are some

logical restrictions on the dispersal parameters that

should be imposed to ensure that what leaves one area is

greater than or equal to what arrives in another. (This

restriction disallows the possibility of biomass entering

the system from patches other than the two we

consider.) With respect to adult dispersal, we assume

that there is no mortality during dispersal and that what

leaves patch i for patch j arrives in patch j. This is

equivalent to assuming that dii ¼ dji.

With respect to juvenile dispersal, we assume that

juveniles produced in patch i will either settle in patch i,

settle in patch j, or settle in neither patch (e.g., mortality

during the settlement process). We allow for the

possibility of mortality by imposing the restriction that

Ai þ Bj/mj � a0
i where mj is the probability of juvenile

survival during the dispersal process, and a0
i is the

growth rate produced by patch i when there is no

connectivity (all juveniles settle in the local patch with

no mortality). When B2 is equal to zero and all juveniles

in patch 1 are retained locally with no mortality, we have

Ai ¼ a0
i .

We can rescale the growth rates Ai and Bi to reflect the

adding-up constraint, where ai¼Ai/a
0
i and bj¼Bj/a

0
i . The

new constraint is ai þ bj/mj ¼ 1, where bj can now be

interpreted as the share of larvae produced in patch i that

contributes to population growth in patch j. Unless

otherwise noted, we will assume that bothmj are equal to

1 and that the above constraint holds with an equality.

For many species, adults and juveniles are likely to

have different rates of movement and dispersal pro-

cesses, since currents largely transport juveniles, whereas

adults may have more directed and purposeful move-

ment. By allowing the dij and bj to vary, many possible

connectivity structures and dispersal processes may be

captured in Eqs. 1 and 2. Assume, for example, that d12
¼ d22¼ b1¼ b2¼ 0 and d21¼ d11 . 0. Then patch 1 is a

source and patch 2 is a sink with only density-

independent settlement (e.g., Holt 1985, Pulliam 1988,

Crowder et. al. 2000). We can also model the case where

patch 1 is a source and dispersing biomass is subject to

density-dependent settlement (b1¼0, b2 . 0, and dij¼0).

When the dispersal parameters are all positive, the

direction and level of dispersal and settlement will

depend on the relative densities and dispersal parame-

ters. In the aggregate, we classify patches as net

exporters (net sources) or importers (net sinks) of

biomass density. With density-independent settlement

only, patch 1 is net exporter, for example, if the net

dispersal term d12x2 � d11x1 is positive. We could have,

for example, a patch that is a net importer of ‘‘juveniles’’

and a net exporter of ‘‘adults.’’ When we link the

ecological and economic submodels, the classification of

patches as net exporters or importers will also depend on

the level of fishing in each patch, since fishing affects the

relative densities of fish in the two populations.

While much of the current theory explaining the

potential utility of reserves (e.g., Hastings and Botsford
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1999, Botsford et al. 2001) considers situations in which

adults are stationary and larvae disperse, it is not

immediately clear how conclusions carry over to the

important case where adults are mobile. An advantage
of Eqs. 1 and 2, therefore, is that we nest within a single

formulation (albeit ad hoc) various dispersal mecha-

nisms and rates. The model also highlights the

importance of the timing of density dependence effects
relative to dispersal processes (Forrester and Steele 2000,

Gerber et al. 2003).

Without fishing (hi ¼ 0 for i ¼ 1, 2), the system will

approach an unexploited biological equilibrium. For

biological realism, we assume that the parameters are
such that a stable, positive equilibrium exists. Formally,

a population density (x b
1, x b

2) is said to be at its biological

equilibrium if F1(x
b
1, x b

2)¼F2(x
b
1, x b

2)¼ 0. It is easy to see

that if the patches are disconnected from each other (so-

called closed biological system), the biological equili-
brium is equal to 1 in each patch (since we have scaled

population size to be measured in density). This is also

true with only juvenile settlement.

ECONOMIC MODEL

In characterizing an optimal fishery management

policy, ecologists often focus on maximum sustainable

physical yield. But as Clark (1990) explains, this

completely ignores many of the relevant economic
considerations. Following Clark (1990), we focus on a

fishery for which a regulator has direct and complete

control of catch levels and for whom the objective is to

maximize the present discounted value of fishery profits
(as opposed to maximizing sustainable yield) by choos-

ing the catch levels in each patch h(t) ¼ (h1(t), h2(t)).

To solve this problem, we determine catch as a

function of time in each patch, assuming that catch is

constrained between 0 and hi,max: 0 � hi (t) � hi,max. If,

under some conditions, it is economically optimal from
the system-wide perspective to set equilibrium hi (t) ¼ 0

for patch i, then a reserve emerges. Note that, in our

formulation, a reserve is not imposed to satisfy some

external biological goal, but rather it emerges as a part
of the optimal catch strategy for the system (recall point

B in Fig. 1). We seek to determine conditions under

which having a reserve is an economically superior

fishing policy to having some catch in both patches.

These circumstances should be less contentious politi-
cally, since they avoid pitting advocates for the

biodiversity conservation benefits of reserves against

user groups who view no-take zones as impinging on

livelihoods.

The objective function of the regulator to be
maximized is formally written as

JðhÞ ¼
Z ‘

0

expð�dtÞ p1 �
c1

x1

� �
h1ðtÞ þ p2 �

c2

x2

� �
h2ðtÞ

� �
dt

where pi is the price received at the dock from fish in

patch i, ci is a fishing cost parameter in patch i, and d is

the social discount rate (Clark 1990). We allow prices to

vary across space due to differences in product quality,

but, for simplicity, assume prices remain constant over

time. We also assume that prices for the fish are not

responsive to changes in catch levels as, for example,

when the fishery in question delivers to a large and

global market.

The per-unit costs of catching fish in patch i is ci/xi
and is a function of two components; the (density) level

of the fish population in the patch and a patch-

dependent cost parameter. Unit fishing costs are

assumed to be stock dependent so that unit costs decline

as population density increases. The constants ci
represent factors (unrelated to population size) involved

in fishing a particular area, such as distance from fishing

grounds (patches) to port. Operating costs could also

differ across patches due to oceanographic conditions

and sea floor topography. Whether per-unit costs of

fishing in period t are low or high in an area depends,

therefore, on both the fish stock size and the cost of

operating in the area. For example, patches that are

farther offshore (greater ci than inshore areas) may have

lower unit costs than inshore patches if offshore

population density effects outweigh fundamental cost

factor effects.

Similar bioeconomic models have been developed in

other settings to address different questions. For

example, Tuck and Possingham (1994) investigate

optimal management in a two-patch sink–source system

with no economic heterogeneity, and Brown and

Roughgarden (1997) use an optimal control model with

larval dispersal to illustrate the value of larval pools to

system-wide fishery profits. Other studies are by

Huffaker et al. (1992), Skonhoft and Solstad (1996),

Jannmatt (2004), and Sanchirico and Wilen (2005). We

assume, as do the aforementioned studies, that the

regulator is knowledgeable, understanding population

dynamics and dispersal mechanics of the biology, with

perfect foresight.

OPTIMAL SPATIAL CATCH RATES AND FISH DENSITIES

Because the solution techniques for our type of

optimal control problem are well documented in Clark

(1990) and Kamien and Schwartz (1991), we present

them in an Appendix. The optimal catch in each period

is determined from maximizing the objective function

subject to the population growth equations (1 and 2)

and a set of initial conditions. The Appendix also

describes how to calculate the optimal values of the

biomass density (or, in an unscaled version, population

size) and the catch when the system is at the optimal

solution.

As the Appendix shows, the solution to the problem

can be expressed as two equations that implicitly define

the optimal (steady-state) equilibrium biomass densities

(x�1 , x�2 ), which depend on biological growth and

dispersal parameters as well as the economic parame-

ters

JAMES N. SANCHIRICO ET AL. Ecological Applications
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ðd� a1 þ 2a1x1Þ p1 �
c1

x1

� �
� c1

x2
1

a1x1ð1� x1Þ

¼ �d11 p1 �
c1

x1

� �
þ d21 p2 �

c2

x2

� �
þ c1

x2
1

ðd12x2 � d11x1Þ

� b1x2 p1 �
c1

x1

� �
þ b2 p2 �

c2

x2

� �
ð1� x2Þ

þ c1

x2
1

b1x2ð1� x1Þ ð3Þ

ðd � a2 þ 2a2x2Þ p2 �
c2

x2

� �
� c2

x2
2

a2x2ð1� x2Þ

¼ �d22 p2 �
c2

x2

� �
þ d12 p1 �

c1

x1

� �
þ c2

x2
2

ðd21x1 � d22x2Þ

� b2x1 p2 �
c2

x2

� �
þ b1 p1 �

c1

x1

� �
ð1� x1Þ

þ c2

x2
2

b2x1ð1� x2Þ: ð4Þ

The terms on the left hand side of Eqs. 3 and 4, which

are derived by rearranging Eq. A.5 in the Appendix, are

the conditions that define the optimal biomass density

levels in a closed ecological system, where all con-

nectivity parameters are zero (bi and dij). In a non-spatial

system, Clark (1990) has shown that the optimal

biomass density level just makes the value of a

(instantaneous) reduction in biomass density from

catching one more unit of fish today (profit from selling

the fish) equal to the present discounted value of the loss

from the long term reduction in the steady state biomass

density from that additional catch taken today.

When each patch is independent, closed form ana-

lytical solutions to Eqs. 3 and 4 are possible and the

optimal equilibrium biomass densities are functions only

of own-patch specific economic and biological parame-

ters. (See the Appendix for derivation and details). It can

be shown that the higher the operating cost, ci, the higher

the optimal biomass density, and the higher the price of

fish, the lower the optimal biomass density, all things

being equal (Clark 1990). Optimal density levels are also

inversely related to the discount rate.

Eqs. 3 and 4 illustrate, however, that there are other

benefits and costs that must be considered in a system of

ecologically connected patches. For example, in a

connected system, removing one unit of steady-state

biomass density in patch 1 affects spillover of adults and

juveniles into patch 2, as well as density-dependent

survival of juveniles migrating into patch 1 from patch 2.

While the optimal biomass density levels will depend

on the simultaneous solution of these equations, it is

possible to describe patch-specific economic effects to

provide intuition about the importance of ecological

connectivity at the sustainable solution. Generally

speaking, a unit of biomass density that leaves a patch

for another could have been caught in its origin. This

represents a loss in potential net profits in the patch of

origin. However, all is not really lost, because the

biomass can be caught at its destination instead. (With

mortality in the dispersal process, there is a potential

loss.) Whether a unit of biomass density is more

‘‘valuable’’ in terms of profit in one or the other patch

depends on the relative prices and costs in the two

patches. In addition, movement of biomass across space

affects the standing population levels in the patches, and

as such, the costs of fishing, which are stock dependent.

Density-dependent or -independent settlement will

modify the form of these three effects, but the intuition

remains the same.

Consider first the economic effects associated with

connectivity at the optimal biomass level in the presence

of ‘‘adult’’ dispersal (also discussed in Sanchirico and

Wilen 2005). If there is no ‘‘juvenile’’ dispersal, only the

first three terms on the right hand side of Eq. 3 apply.

The first term �d11(p1 � (c1/x1)) is the (instantaneous)

loss in marginal profits from a one-unit sustained

reduction in biomass density in patch 1, where [p1 �
(c1/x1)] is the sustainable (per-unit) profit from catching

fish in patch 1. A fish that leaves patch 1 and enters

patch 2, however, can be caught in patch 2. The second

term, d21[p2 � (c2/x2)], measures the sustained returns

from catching the fish that migrates from patch 1 into

patch 2. The (marginal) change in biomass density in

patch 1 (holding biomass in patch 2 constant) due to

dispersal will also affect the costs of fishing, because of

the assumption that fishing costs depend on the density

of the standing fish stock. The third term reflects this

cost effect, (c1/x
2
1)(d12x2 � d11x1), where the second

component is the net dispersal in patch 1. Positive net

dispersal implies fish are, on net, entering patch 1 (patch

1 is a net importer). The cost effect is the change in the

total cost of fishing in patch 1 that results from an

infinitesimal increase in fish in patch 1.

How does density dependent settlement affect the

optimal spatial catch rates? This can be addressed by

examining Eq. 3, suppressing ‘‘adult’’ dispersal by

assuming that the dij are equal to zero. The first term

b1x2[p1 � (c1/x1)] is the (marginal) loss in sustainable

profit in patch 1 due to the competition between

juveniles arriving from patch 2 and those already

present in patch 1.

The second term, b2[p2 � (c2/x2)](1 � x2), represents

the change in net sustained profits in patch 2 associated

with juveniles that leave patch 1 and are caught in patch

2. Everything else being equal and this term being

smaller, the greater the density of fish in patch 2,

reflecting the density dependent survival there. Because

juveniles that arrive in a patch are instantaneously

subject to the growth process in the patch, the growth/

settlement rate scales this effect. Although immigrant

juveniles from patch 2 lower the potential investment

returns in patch 1 via their effect on the biological

growth process (a reduction of the growth rate), they

also affect the standing population density in the patch.

With stock dependent costs, higher population densities

imply lower costs.

The third term, (c1/x
2
1)[b1x2(1� x1)] (c1/x

2
1), represents

the change in patch 10s sustained fishing costs due to the
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shuffling of biomass (juveniles) density across the

patches. The term out front is the change in the unit

cost of fishing in patch 1. The term in brackets is the

share of sustainable catch in patch 1 due to the influx of

juveniles from patch 2. This can be seen by noting that

the steady-state catch in patch 1 is equal to h1¼ a1x1(1�
x1)þb1x2(1� x1). Therefore, the term reflects the change

in total (sustainable) costs of catching fish in patch 1

that is attributable to the juveniles arriving from patch 2.

Unlike the density-independent settlement case, the

magnitude of this effect depends directly on the density

of the resident fish population.

With both adult and juvenile settlement occurring, the

regulator needs to tradeoff not just economic values

associated with standing biomass in the local patch, but

also the value associated with ‘‘nature’s’’ reallocation via

various dispersal processes. Because the regulator is

setting the optimal catch in each patch, she will need to

tradeoff catching more fish in patch 1, which implies

lower population levels and therefore fewer adults and

juveniles dispersing to patch 2, against catching fewer

fish in patch 1 and shifting effort to patch 2. This trade-

off explicitly accounts for the relative profitability

associated with harvesting in each patch, itself a

function of bioeconomic parameters associated with

each patch as well as with the nature of connectivity

between patches.

WHEN ARE NO-TAKE ZONES AN ECONOMICALLY OPTIMAL

FISHERY MANAGEMENT STRATEGY?

We now turn to the question: under what economic

and biological conditions are reserves, or permanent

fishery closures, a feature of an economically optimal

management plan? In other words, when is completely

closing a patch (point B in Fig. 1) superior to having

non-zero fishing levels in both patches (point A in Fig.

1)? We are interested in how the different types of

dispersal processes and strengths increase or decrease

the feasible region over which reserves are optimal

relative to the case with no connectivity. For example,

are reserves more likely to be part of the economically

optimal solution in systems with density independent

settlement than in systems with density dependent

settlement?

In this system, a reserve is the optimal long-term

management strategy whenever the optimal catch level is

a boundary solution with hi ¼ 0 at the steady state. In

what follows, we analyze separately which specific

ranges of fishing cost ci and biological growth ai
parameters lead to a boundary solution. We choose to

highlight the role of costs because, while most of the

natural science articles on marine reserves focus on

yields (e.g., Hastings and Botsford 1999, Tuck and

Possingham 2000, Nuebert 2003), differential costs are

important determinants of site selection under economic

objectives (e.g., National Research Council 2001,

Sanchirico and Wilen 2001, Sanchirico 2004). Inves-

tigating growth rates sheds light on whether highly

(biological) productive patches are more likely to lead to

optimal fishery closures than lower productivity patches.

In each case, we rely on numerical solutions to

provide insight into these questions. Without loss of

generality, we focus on the costs and intrinsic growth

rates in patch 1, which is our reserve designate patch,

and patch 2 is the patch to be left open to fishing. Let W
be the parameter of interest in patch 1 (c1 or a1). We seek

the critical value of W, denoted Wcrit, which is the level of

W that generates h1 ¼ 0, i.e., closure as an optimal

solution, given a set of biological and economic

parameters.

We solve for the set (Wcrit, x�1 , x�2 ) by simultaneously

solving Eqs. 3 and 4, and F1(x1, x2) ¼ 0. The resulting

solution, therefore, satisfies the conditions for economic

optimality and that the catch rate in patch 1 is 0 or h1¼
0. The catch in patch 2 is then determined at its

equilibrium value by F2(x
�
1 , x�2 )¼ h�2 . We solve for (Wcrit,

x�1 , x�2 ) by varying the dispersal rates to understand how

dispersal and the types of settlement affect the likelihood

of a reserve being part of the optimal solution.

In the simulations, unless otherwise stated, we assume

that all parameters are the same across the patches. Prices

are equal to 1 and a discount rate of 7% is used. We also

perform sensitivity analysis on the discount rate and on

the assumptions regarding parameter homogeneity.

Operating cost of fishing

We first examine how costs of fishing affect the

possibility that a reserve is part of an economically

optimal solution. Specifically, we solve for the triplet

(ccrit
1 , x�1 , x�2 ) where the critical value of cost is denoted

ccrit
1 and denotes the level of c1 that generates h1¼ 0, i.e.,

closure as an optimal solution, given a set of biological

parameters and cost in the second patch (c2¼ 0.25). For

any level of costs greater than or equal to ccrit
1 , patch 1 is

optimally closed to fishing and for any levels below ccrit
1 ,

the optimal catch rates in both patches are non-zero.

With certain sufficiently simple systems, we can solve

for the critical values analytically. For example, assume

that the ecological system is spatially independent or

closed. Then a reserve in patch 1 implies that the optimal

population must be at the natural equilibrium of 1.

Given that the unit price of harvest is 1, the critical cost

coefficient in patch 1 that generates this is also equal to 1

(ccrit
1 ¼ 1). As we mentioned previously, this case

represents an important benchmark where the optimal

catch rates depend only on the patch specific parame-

ters. With c1 � 1 and c2 , 1, the optimal solution is to

have no fishing in patch 1. It is important to note that

the motivation for no fishing in patch 1 is not because of

the potential spillover effects, as there are none in this

case, but rather because it is simply not profitable to fish

in patch 1 with such high costs. We can also show

analytically that when patch 1 is a sink patch d12 . 0, d21
¼d11¼0, and b2¼0, closing patch 1 is optimal under the

same conditions as when the system is closed. Tuck and

Possingham (2000) find a similar result.
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In an ecologically connected system, we can examine

how various dispersal rates in each patch affect the

critical cost parameter. For example, we ask, would it

ever be optimal to shut a patch down with connectivity,

when the cost coefficient in that patch is below 1? By

varying the dispersal rates in each patch, we can map out

how the critical cost coefficient changes under different

conditions. While we allow that the movement rates dij
can differ from one patch to the other, we will assume

conditions that imply no loss during settlement. That is,

the flow of fish leaving one patch is assumed the same as

the flow entering the other patch. To focus on the effects

of ‘‘adult’’ dispersal, the ‘‘juvenile’’ connectivity param-

eters bi are first set to zero.

Before illustrating the general case where we vary

‘‘adult’’ dispersal both to and from patch 1, we present

the levels of ccrit
1 as a function of the dispersal rates dij

from patch 1 to patch 2 (here measured as a proportion

of the intrinsic growth rate in the patch). We do this by

holding the dispersal rate from patch 2 to patch 1

constant. Fig. 1 illustrates the relationships for four

levels of dispersal rates from patch 2 to patch 1 measured

as a proportion of a2 including (0, 0.1, 0.2, 0.5).

The northwest panel in Fig. 1 illustrates the case where

dispersal is unidirectional from patch 1 to patch 2

(dispersal from 2 to 1 is zero). In other words, patch 1 is a

pure source and patch 2 is a sink. While not a likely

situation in the marine environment, this case bounds the

potential solutions and provides intuition for the more

complex scenarios. For cost levels less than the critical

cost, both patches are optimally open to fishing and for

levels above or equal to the critical cost coefficient,

closing patch 1 to fishing is part of the optimal solution.

The origin represents the closed biological system

(dispersal to either patch is zero), where ccrit
1 ¼ 1. We

also show (for reference) the cost level in patch 2 (c2).

Overall, we find that the critical cost coefficient

decreases as the dispersal from patch 1 to 2 increases.

For low dispersal levels, ccrit
1 . c2, implying that for a

no-take zone to be optimal, the cost differential between

FIG. 2. Density-independent settlement and critical cost coefficient levels for different dispersal rates to patch 1. By holding
dispersal to patch 1 (reserve designate in our analysis) fixed at a particular level, we illustrate how the critical cost coefficient
changes as the dispersal from patch 1 (reserve designate) to patch 2 (fished area) increases. Regions in the panels illustrate solutions
for which it is optimal to have both patches open to fishing (c1 , ccrit

1 ) or to close patch 1 to fishing (c1 � ccrit
1 ). The dashed line

represents the cost coefficient assumed for patch 2 (c2) and the solid line represents the critical cost level (ccrit
1 ). When the critical cost

level is below the dashed line, it is optimal to close the low-cost patch. The upper left panel represents the case of unidirectional
dispersal (patch 1 is a source and patch 2 is a sink). The other panels represent different dispersal regimes with respect to the
dispersal flowing from patch 2 to patch 1.
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the patches must be considerable (e.g., due to travel

costs). As the dispersal levels from patch 1 to patch 2

increase, ccrit
1 decreases and eventually we find that no-

take zones are optimal even when there is no hetero-

geneity in the parameters of the system (ccrit
1 ¼ c2 and

growth rates are identical). For high dispersal levels, it is

even possible that closing the low cost patch is optimal,

where ccrit
1 , c2. This is a counterintuitive case whereby it

is economically efficient to close the patch with the lower

operating cost. This occurs because sufficiently high

dispersal rates cause the spillover benefits from the

closing the patch to outweigh the (also relatively high)

lost profitability of closing the patch. Previous studies

that focus on source–sink systems with no patch

heterogeneity have discussed the case where ccrit
1 ¼ c2.

The other three panels represent different dispersal

rates to patch 1 from patch 2. As this rate increases, the

potential net spillover benefits from closing patch 1

decrease. Because the spillover benefits decrease, the

critical cost coefficient level such that it is optimal to

close patch 1 increases. The implication is that, for an

optimal no-take zone, the cost from closing the patch

(lost profitability) must be low and this occurs with

higher cost coefficients, everything else being equal. This

can be seen by holding the dispersal to patch 2 fixed at a

level and comparing the critical cost parameter across

the panels in Fig. 2. As the two lower panels in Fig. 2

illustrate, with low net spillover benefits, it is never the

case that it is optimal to close the low-cost patch (ccrit
1 .

c2). It is important to note that this holds even for high

dispersal rates to patch 2. The reason is that what

matters for an optimal no-take zone is not the absolute

dispersal rate but the relative rates when dispersal is

presumed to flow in both directions.

We use a contour plot, Fig. 3, to illustrate the general

solution where both dispersal rates are varied. The case

with no dispersal is at the point (0, 0). The panels in Fig.

2 are nested within this surface. Holding dispersal into

patch 2 at zero (moving along the y-axis in Fig. 3), the

critical cost parameter increases as the dispersal rate into

patch 1 increases. As discussed earlier, when the

dispersal rate increases and there is a net flow into the

patch, the (marginal) cost of fishing will be lower. The

increase in the ‘‘standing stock’’ of biomass reduces the

costs of fishing (makes the patch more profitable to

operate in), which implies that, for patch 1 to be closed

optimally, the unit operating cost of fishing must

increase to justify closing the patch. The corollary is

FIG. 3. Density-independent settlement and critical cost coefficient levels. The dispersal rate is measured as a proportion of the
patch intrinsic growth rates. The y-axis corresponds to the case where patch 1 is a sink, and the x-axis corresponds to the case where
patch 2 is a source. The contour lines correspond to critical cost levels for which closing patch 1 to fishing is part of the optimal
solution. To the left of the ‘‘dispersal cost threshold’’ line, critical cost coefficient levels are greater than 1 and, to the right, the
critical coefficients are less than 1. The area to the right of the threshold illustrates conditions where patch 1 would be too high cost
to operate in if there were no spillover coming from patch 2 to reduce the cost of fishing. To the right of the line identifying the
assumed fishing cost coefficient in patch 2 is the area where the critical cost coefficients for closing patch 1 fall below the cost
coefficient in the patch open to fishing. The region between the two dashed lines represents the area where the critical cost
coefficient is less than 1 (so fishing would occur if the patches were not biologically connected), but for which (due to dispersal) the
optimal solution consists of closing the patch to fishing.
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that even with a cost coefficient greater than one (all

points to the left of the ‘‘dispersal cost threshold’’ line in

Fig. 3) but less than the critical cost level (1 , c1 , ccrit
1 ),

it is possible that fishing would be justified optimally in

patch 1 when it would not in the case with no

connectivity. Thus, dispersal can make fishing profitable

in places that would otherwise be unexploited. This case

is also evident in the two lower panels of Fig. 2.

The source–sink case illustrated in the upper left panel

in Fig. 2 corresponds to the x-axis in Fig. 3. As we

increase the dispersal entering patch 2, the critical cost

parameter decreases. That is, the economic gains from

fish swimming from the high-cost (patch 1) to the low-

cost patch (patch 2) more than compensate for the lost

returns from closing patch 1. As the dispersal rate

increases, this effect increases and for high enough

levels, the critical cost parameter may actually be below

the operating cost level in patch 2. This occurs for all

points to the right of the cost in patch 2 line (identified

by c2) in Fig. 3. In fact, as is illustrated in Fig. 3, it may

be profitable to close a patch with very low costs,

depending on the dispersal rate, because the closed patch

is more valuable as a source for the other patch.

As we move off either axis, the degree of dispersal

(mixing) between the two patches depends on the

relative optimal density levels and dispersal rates. In

the Appendix, Fig. A1 illustrates the net direction of

dispersal and its magnitude (measured as a percentage of

the aggregate biomass) for each of the triplets (ccrit
1 , x�1 ,

x�2 ) represented in Fig. 3. Essentially, the magnitude of

the spillover benefits from closing patch 1 increase as we

move from the northwest corner to the southeast corner

in Fig. 3.

While a unidirectional source–sink network is the

most likely scenario leading to closure as the econom-

ically efficient solution, our results imply that more

general settings can be candidates for optimal closures.

We denote this more general class of systems as net

exporters (net sources). It is not sufficient, however, for

measured flows to be leaving the closed area for a

closure to be economically optimal. The cost of fishing

must also be such that given the ecological network, it is

more profitable to allow fish to grow in the reserve and

disperse to the fished area than to fish in both areas.

We illustrate in Fig. 4 and Fig. 5 the case with juvenile

dispersal only or with the dij set to zero. In Fig. 4, we

illustrate how ccrit
1 varies with dispersal to patch 2,

FIG. 4. Density-dependent settlement and critical cost levels for different dispersal rates to patch 1. By holding dispersal to
patch 1 (reserve designate in our analysis) fixed at a particular level, we illustrate how the critical cost coefficient changes as the
dispersal from patch 1 (reserve designate) to patch 2 (fished area) increases. The area below the critical cost threshold illustrates
conditions for which it is optimal to have both patches open to fishing (c1 , ccrit

1 ) and the area above shows when it is optimal to
close patch 1 to fishing (c1 � ccrit

1 ). The lines represent different critical cost coefficients for different assumptions regarding the
dispersal flows to patch 1. Unlike in Fig. 2, we do not find cases where the critical cost parameter is lower than the costs in patch 2
(fished area).
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holding the dispersal to patch 1 fixed at (0, 0.1, 0.2, 0.5).

Unlike the above analysis, dispersal in this setting is
measured as the share of juveniles produced in patch i

settling in patch j. Therefore, as we move away from the
origin along the x-axis, for example, we increase the
share (b2) of the juveniles from patch 1 settling in patch

2, but this increase implies that local retention a1
decreases (recall, we are imposing the constraint that

a1 þ b2 ¼ 1).
Both Fig. 4 and Fig. 5 illustrate that, as the dispersal

rate into patch 2 increases, the critical cost parameter

decreases and vice versa. The reasoning for these effects
is the same as with the adult dispersal case. What is

different, however, is that the range of costs where a
reserve is optimal is smaller for juvenile dispersal (or
density-dependent settlement) than for adult dispersal.

That is, ccrit
1 . c2 for all configurations of the parameters

(no c2 line in either Fig. 4 and Fig. 5). Why is this the

case?
Moving along the y-axis in Fig. 5, patch 1 is a pure

sink and the critical cost parameter for a closure is equal

to 1. This is the same level as the closed case. Why is the
dispersal-cost threshold effect (ccrit

1 . 1) that prevailed

with density-independent settlement not present in this
case? For the simple reason that with the population
density in patch 1 equal to 1, any potential positive

effects on spillover are eliminated due to density
dependence (e.g., high levels of mortality in the

settlement process).

Fig. A2 in the appendix illustrates the net dispersal at

the optimal solution in this system, which is equal to
b1x�1 � b2x�2 , and is measured as a percentage of the

aggregate optimal biomass density levels. Relative to the
adult dispersal case (Fig. A1), the dispersal flows are
greater in this system. If the net magnitude of the

spillover benefits is larger as measured at the point of
departure (not settlement success), then why is the

critical cost parameter range smaller? The answer is
because of the density dependence in juvenile dispersal.
This illustrates rather clearly the issues associated with

using increased egg production as a measure of reserve
success for species with density-dependent settlement.

Biological growth rates

Advocates for reserves often propose identifying and

closing biological hotspots, defined as areas that are
believed to be more biologically productive. In our

model, we can represent hotspots with higher ai
parameters. To investigate this conjecture, we solve for
the critical growth rate in patch 1 such that a closure

would be optimal and compare it to the level in the open
patch. We do this assuming that the only heterogeneity

in the system is in the growth rates (costs are equal at
0.25). If the critical rate is above the level in the open
patch, then we can conclude that closing the more

biologically productive patch is optimal.
Here we solve for the set (acrit

1 , x�1 , x�2 ) by simulta-

neously solving Eqs. 3 and 4, and F1(x1, x2) ¼ 0 for

FIG. 5. Density-dependent settlement and critical cost coefficient levels. On both axes, we measure the share of juveniles that
move from one patch to another as a proportion of the patch intrinsic growth rates (recall that we impose the adding-up restriction
on the juvenile dispersal process). The y-axis corresponds to cases where patch 1 is a sink and the x-axis corresponds to the case
where patch 2 is a sink. The contour lines correspond to critical cost coefficients (ccrit

1 ) for which closing patch 1 to fishing is part of
the optimal solution. Unlike in Fig. 3, there are no cases in which the critical cost coefficient is lower than the coefficient in patch 2
(fished area).
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different rates of dispersal. Unlike the cost case,

however, there are combinations of dispersal rates that

lead to infeasible critical levels with negative growth

rates. These are infeasible because there are conditions

on the growth and dispersal parameters that need to

hold to ensure a positive equilibrium biomass level. For

example, when a patch 1 is a pure source (d12, d22, and b1
are equal to zero), it must be the case that a1 . d11. If a1
� d11, then the net intrinsic growth rate would be
negative (or zero) leading to zero population levels. In

Fig. 7 and Fig. 9, the region with implied negative

growth rates is labeled infeasible and the growth rate in

the fished area is also labeled (a2).

As we did with the cost analysis, we begin by

presenting the results for the ‘‘adult’’ dispersal case

and for a discrete set of dispersal rates to patch 1 (our

reserve designate). Fig. 6 illustrates how acrit
1 increases

with increases in the dispersal rate to patch 2, holding

the dispersal rate to patch 1 fixed at (0, 0.075, 0.15, 0.3).

The x-axes are now simply the dispersal rate (not

measured relative to the growth rate). To compare

relative magnitudes of the dispersal rates divide by the

critical growth parameters, where the levels are repre-

sented either by points (Fig. 6) on the line or by the

contour lines (Fig. 7).

Starting with the upper left panel in Fig. 6, which

represents the case with patch 1 a source and patch 2 a

sink, the critical growth rate increases as the dispersal

rate to patch 2 increases. If the actual a1 is greater than

acrit
1 and the dispersal rate is low (region above the line),

then it is economically optimal for both patches to be

open to fishing. If the dispersal rate is high, then closing

patch 1 is an economically optimal solution (region

below the line). We also illustrate the growth rate

assumed in patch 2 (a2).

Similar to the results for closing the low-cost patch,

closing the high biologically productive patch is

economically optimal with high dispersal rates to patch

2. This potential outcome is illustrated in all the panels,

except the lower right corner in Fig. 6. The intuition for

FIG. 6. Density-independent settlement and critical growth rates for different rates of dispersal to patch 1. By holding dispersal
to patch 1 (reserve designate in our analysis) fixed at a particular level, we illustrate how the critical growth rate changes as the
dispersal from patch 1 (reserve designate) to patch 2 (fished area) increases. We assume that costs are equal across the patches.
Regions in the panels illustrate the optimal solution whereby, for example, it is optimal to have both patches open to fishing (a1 ,
acrit

1 ) or to close patch 1 to fishing (a1 � acrit
1 ). The dashed line represents the critical growth rate in patch 2 (a2). When the growth

rate (solid line) is above the dashed line, it is optimal to close the high-productivity patch. The top left panel represents the case of
unidirectional dispersal (patch 1 is a source and patch 2 is a sink). The other panels represent different dispersal rates from patch 2
to patch 1. Points to the left of the intercept on the x-axis are infeasible.
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this result can be seen with the single patch case with

logistic growth, where higher growth rates lead to higher

yields. In a patchy system, higher growth rates are areas

that are more profitable and therefore, the foregone

profits (or opportunity costs) from closing these areas

are higher. However, when the dispersal from the reserve

is sufficient to outweigh these higher returns, it becomes

optimal to close the patch with higher growth rates.

Sanchirico and Wilen (2002) found a similar result. We

do not find this result in the lower right panel, because

the net benefits from spillover are not great enough to

outweigh the lost profitability. Recall that, with

dispersal potentially flowing in both directions, the

relative dispersal rates are more important than the

absolute levels for setting the optimal catch rates.

Fig. 8 and Fig. 9 illustrate the analysis for the case

with juvenile dispersal. The axes measure the share of

juveniles contributing to the other patch’s growth.

Unlike the previous analysis where we analyzed adult

and juvenile dispersal separately, we consider both

processes simultaneously when mapping out the critical

intrinsic growth rate in the presence of juvenile dispersal.

The critical intrinsic growth rate we solve for is a0
1, which

is the growth rate when all juveniles are retained locally.

Because of the adding up restriction (recall, the unscaled

version is Aiþ (Bj/mj)¼a0
i with mj¼1), when we vary the

share of juveniles dispersing Bi or Bj, we need to ensure

that this constraint is met at each point. In general,

solving for this triplet is a highly nonlinear problem and

when adult dispersal rates are set to zero, the numerical

results are unstable. On the other hand, when adult

dispersal is included, the solutions are more easily

found. Therefore, we hold the adult dispersal rates fixed

and equal across the patches at dij¼ 0.3. The remaining

parameters are the same as the adult dispersal analysis in

Fig. 7.

Not surprisingly, the pattern is very similar between

Fig. 7 and Fig. 9 with some differences. First, the region

where closing the high growth rate patch is the best

choice is smaller. See, for example, the upper left panel

in Fig. 8. Second, the infeasible region is larger and it

now encompasses the origin. It is important to note that,

in this case, the reserve is a pure source of juveniles

along the x-axis, but it is only a net source with respect

to adult dispersal (as determined by the optimal

population sizes for x�1 and x�2 .
Across the two cases, when the objective is to

maximize the present discounted value from fishing,

closing patches with high intrinsic growth rates is the

optimal policy when the patch is also a net source with

high spillover. In an ecosystem context, these appear to

be necessary conditions for a patch to be considered a

bioeconomic hotspot. Therefore, while it is not always

FIG. 7. Density-independent settlement and critical growth rates. The axes are the dispersal rates, dij. The contour lines
correspond to the critical growth rate in patch 1 that would lead to closing patch 1 when the costs in both patches are equal (0.25).
Except for the bottom right area, which is delineated by the dashed line, the critical growth rate in patch 1 is below the growth rate
in patch 2. For this region, if a closure is optimal, it is more likely to be that the low-growth patch is closed to fishing. Only for high
dispersal rates in systems where patch 1 (reserve designate) is acting close to a source do we find that the critical growth rate is
higher than in the fished patch.
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optimal to close the high intrinsic growth patch, closing

low biological productivity areas might be optimal.

Sensitivity analysis

In most marine systems, the assumption that there is

no mortality in the juvenile dispersal process is

unrealistic. We investigated this by setting the mortality

rates equal to and less than 1 and generating figures

similar to those presented. We found that the level of the

critical cost parameter is higher and growth rate is

lower, everything else being equal. The value associated

with the ecological network decreases with increased

dispersal mortality. As the dispersal mortality increases,

it pays even with higher operating costs to catch the fish

before they are subject to the higher mortality, which

implies keeping the area open to fishing.

We also investigated the effect of lower discount rates

across all cases. Because the lower the discount rate, the

higher the optimal population, as illustrated in the

closed analytical solution in the Appendix, it is possible

that lower discount rates could favor closures. We find

increases in the feasible regions for critical costs and

growth rates when the analysis is done with a 2%

discount rate.

Finally, in the cost analysis, we explore the effects of

asymmetries in the biological growth rates and in the

growth rate analysis, asymmetries in the operating costs.

With respect to the case of asymmetries in biological

growth rates, we focus on the case of higher growth rates

in the fished area (patch 2) when solving for the critical

cost parameters. Due to the opportunity costs associated

with higher growth rates, this case is more likely to lead

to significant changes in the feasible cost region. The

results, however, did not vary significantly from those

presented in Figs. 3 and 5. We also considered the case

of lower costs in the fished area (patch 2) when solving

for the critical growth rates, which again is likely to

favor optimal closures. Relative to Fig. 7 and Fig. 9, we

find a larger feasible region (smaller infeasible region).

FIG. 8. Density-independent and -dependent settlement and critical growth rates for different dispersal rates to patch 1. By
holding the share of juveniles to patch 1(reserve designate) fixed at a particular level, we illustrate how the critical growth rate
changes as the share of juveniles from patch 1 (reserve designate) to patch 2 (fished area) increases. Costs are equal across the
patches. Regions in the panels illustrate the optimal solution whereby, for example, it is optimal to have both patches open to
fishing (a1 , acrit

1 ) or to close patch 1 to fishing (a1 � acrit
1 ). The dashed line represents the critical growth rate in patch 2 (a2). When

the critical growth rate (solid line) is above the dashed line, it is optimal to close the high-productivity patch. The upper left panel
represents the case of unidirectional flows of juveniles (patch 1 is a source of larvae and patch 2 is a sink). The other panels
represent different levels of larval flows from patch 2 to patch 1. Points to the left of the intercept on the x-axis are infeasible.
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CONCLUSIONS

This paper identifies situations where long-term

system-wide fishery profits are maximized and where

reserves (as opposed to nonzero fishing levels in all

patches) emerge as part of the optimal solution. In

reality, most fisheries are not optimally managed, since it

is difficult to precisely determine population sizes or

accurately regulate catch. However, our stylized model

does shed light on general conditions whereby reserves

are more likely to be politically acceptable, regardless of

whether the goal of the reserve is increased catches,

biodiversity, or profits.

Intuitively, optimal management of patchy biological

systems trades off the loss in profits from a fish leaving,

the gain in profit from the fish being caught in another

area, and the change in fishing costs due to the

reallocation of the stock. An implication is that optimal

spatial management requires not just managing the fish

stock in each area but the direction and magnitude of

dispersal. In this setting, a reserve is simply a way to

manage and influence the dispersal to high-profit

patches. The evaluation of the trade-offs are based on

relative profitability, which depends on relative econom-

ic and ecological conditions, and the nature of the

dispersal mechanisms.

With respect to optimal no-take zones, the conditions

for these to emerge depend on the spatial heterogeneity

of the system and dispersal mechanisms. For example, in

most situations, the higher cost patch is likely to be

closed optimally. Closing lower cost patches, however,

can be optimal when the dispersal rate into the fished

area is very high and there is little, if any, out migration

of biomass from the fished area. This is due to the

ecological network effect. Optimal closures are also

more likely when the growth rate in the reserve designate

is lower than in the fished area, a finding that runs

contrary to the popular notion of finding and closing the

high biological productive patches.

The specific form of ecological connectivity is another

important determinant of our results. Relative to

density-dependent settlement, the density-independent

system increased the range of parameters for which a

complete closure is the optimal solution. This is some-

what surprising, but can be explained by the fact that as

the reserve population increases, density-dependent

effects become more pronounced and begin to dominate

the potential benefits from spillover. Regardless of the

mechanism, the range of parameters leading to complete

closure increases with increases in the dispersal rate,

provided that the reserve is acting as a net exporter.

FIG. 9. Density-independent and -dependent settlement and critical growth rates. The axes represent the share of juveniles that
disperse from one patch to the other. The contour lines correspond to the critical growth rates a0

1 that would lead to optimal
closures when the costs in both patches are equal (0.25) and adult dispersal rates are equal (0.3). Except for the bottom right area,
which is delineated by the dashed line, the low-growth patch is closed to fishing.
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Our results echo the themes (e.g., Gerber et al. 2003,

Guichard et al. 2004) that the key to understanding the

optimal spatial management of marine species is knowl-

edge of dispersal, and the causes and timing of density

dependence (Forrester and Steele 2000). Unfortunately,

both factors are notoriously difficult to estimate for

many marine species (e.g., Steele 1997, Shanks et al.

2003). It is for this reason that we undertake qualitative

analysis rather than attempt quantitative analysis. Our

work also reinforces the idea that efforts made to

improve estimates of dispersal and predictive models of

density dependence in marine systems may have

potentially large payoffs in efficient management.

We emphasize that our assumptions are conservative

in the sense that they are more likely to conclude that

point A rather than point B in Fig. 1 is the optimal

solution. An important area for future research is to

understand which of the many dimensions of fishery

management, such as bycatch, multispecies interactions,

and economic and biological uncertainties (Lauck et al.

1998, Costello and Polasky 2005), could also provide

circumstances where marine reserves are optimal.

Because ocean management is broader than just fisheries

management, it seems prudent to also investigate effects

when there exist in situ values to the fish stock, such as

when there are nonconsumptive uses. All of these

analyses would need to consider the spatial ecology

and economics together and would need a foundation

from which to compare the results. Our integrated

ecological-economic model is an example of such a

framework.

As information on the nature and strength of

ecological connectivity and patchy environments in

marine systems increases, the ability to tailor policies

to account for these interactions will increase. In fact, we

are likely to move toward a zonal approach, with

varying types of uses permitted across zones, with no-

take zones and rotating harvest zones as possible uses. A

key component in the planning of a zonal system will

involve the identification of bioeconomic hotspots that

might or might not be good candidates to be closed to all

extractive uses. In a spatial system, some of the

characteristics of a hotspot, as identified in our analysis,

would be a patch that is a net exporter with high

dispersal flows out of it, relatively higher cost and with

lower biological productivity. Further clarification of

how to define and empirically identify these hotpots is

an important area for future (interdisciplinary) research.

Importantly, as our analysis shows, hotspots are more

properly viewed as determined by both biological and

economic factors, rather than biological factors alone.
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