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Existing models suggest that reciprocity is unlikely to evolve in large groups as a result 
of natural selection. In these models, reciprocators punish noncooperation by with- 
holding future cooperation, and thus also penalize other cooperators in the group. Here, 
we analyze a model in which the response is some form of punishment that is directed 
solely at noncooperators. We refer to such alternative forms of punishment as retri- 
bution. We show that cooperation enforced by retribution can lead to the evolution of 
cooperation in two qualitatively different ways. (1) If benefits of cooperation to an 
individual are greater than the costs to a single individual of coercing the other n - 
1 individuals to cooperate, then strategies which cooperate and punish noncooperators, 
strategies which cooperate only if punished, and, sometimes, strategies which cooperate 
but do not punish will coexist in the long run. (2) If the costs of being punished are 
large enough, moralistic strategies which cooperate, punish noncooperators, and punish 
those who do not punish noncooperators can be evolutionarily stable. We also show, 
however, that moralistic strategies can cause any individually costly behavior to be 
evolutionarily stable, whether or not it creates a group benefit. 

1. I N T R O D U C T I O N  

H 
uman  b e h a v i o r  is un ique  in that  c o o p e r a t i o n  and  d iv i s ion  o f  l abo r  

o c c u r  in soc ie t i e s  c o m p o s e d  o f  large numbe r s  o f  un re l a t ed  in- 

d iv idua l s .  In  o t h e r  eusoc ia l  spec ies ,  such as  socia l  insec ts ,  so- 

c ie t ies  a re  m a d e  up o f  c lose  gene t ic  re la t ives .  A c c o r d i n g  to con-  

t e m p o r a r y  e v o l u t i o n a r y  t heo ry ,  c o o p e r a t i v e  b e h a v i o r  can  only be  f avo red  

by  se lec t ion  when  socia l  g roups  are  f o r m e d  so that  c o o p e r a t o r s  a re  more  
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likely to interact with other cooperators than with noncooperators (Hamilton 
1975; Brown et al. 1982; Nunney 1985). It is widely agreed that kinship is 
the most likely source of such nonrandom social interaction. Human society 
is thus an unusual and interesting special case of the evolution of cooper- 
ation. 

A number of authors have suggested that human eusociality is based 
on reciprocity (Trivers 1971; Wilson 1975; Alexander 1987), supported by 
our more sophisticated mental skills to keep track of a large social system. 
It seems unlikely, however, that natural selection will favor reciprocal co- 
operation in sizable groups. An extensive literature (reviewed by Axelrod 
and Dion 1989, also see Hirshleifer and Martinez-Coll, 1988; Boyd 1988, 
1989) suggests that cooperation can arise via reciprocity when pairs of in- 
dividuals interact repeatedly. These results indicate that the evolutionary 
equilibrium in this setting is likely to be a contingent strategy with the general 
form: "cooperate the first time you interact with another individual, but 
continue to cooperate only if the other individual also cooperates.'" Several 
recent papers (Joshi 1987; Bendor and Mookherjee 1987; Boyd and Rich- 
erson 1988, 1989) present models in which larger groups of individuals in- 
teract repeatedly in potentially cooperative situations. These analyses sug- 
gest that the conditions under which reciprocity can evolve become 
extremely restrictive as group size increases above a handful of individuals. 

In most existing models, reciprocators retaliate against noncooperators 
by withholding future cooperation. In many situations other forms of retal- 
iation are possible. Noncooperators could be physically attacked, be made 
the targets of gossip, or denied access to territories or mates. We will refer 
to such alternative forms of punishment as retribution. It seems possible 
that selection may favor cooperation enforced by retribution even in sizable 
groups of unrelated individuals because, unlike withholding reciprocity, ret- 
ribution can be made only against noncooperators, and, because with ret- 
ribution, the magnitude of the penalty imposed on noncooperators is not 
limited by an individual's effect on the outcome of cooperative behavior. 

Here, we extend the theory of the evolution of cooperation to include 
the possibility of retribution. We review the evolutionary models of the ev- 
olution of reciprocity in sizable groups, and present a model of the evolution 
of cooperation enforced by retribution. An analysis of this model suggests 
that retribution can lead to the evolution of cooperation in two qualitatively 
different ways. 

1. If the long-run benefits of cooperation to a punishing individual are greater 
than the costs to that single individual of coercing all other individuals 
in a group to cooperate, then strategies which cooperate and punish non- 
cooperators, strategies which cooperate only if punished, and, some- 
times, strategies which cooperate but do not punish coexist at a stable 
equilibrium or stable oscillations. 

2. If the costs of being punished are large enough, '!moralistic" strategies 
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which cooperate, punish noncooperators, and punish those who do not 
punish noncooperators can be evolutionarily stable. 

We also show, however, that moralistic strategies can cause any indi- 
vidually costly behavior to be evolutionarily stable, whether or not it creates 
a group benefit. Once enough individuals are prepared to punish any be- 
havior, even the most absurd, and to punish those who do not punish, then 
everyone is best off conforming to the norm. Moralistic strategies are a 
potential mechanism for stabilizing a wide range of behaviors. 

2. M O D E L S  O F  T H E  E V O L U T I O N  O F  R E C I P R O C I T Y  

Models of the evolution of reciprocity among pairs of individuals share many 
common features. Each assumes that there is a population of individuals. 
Pairs of individuals are sampled from this population and interact a number 
of times. During each interaction individuals may either cooperate (C) or 
defect (D). The incremental fitness effects of each behavior define a single 
period prisoner's dilemma, and, therefore, cooperative behavior is altruistic 
in the sense that it reduces the fitness of the individual performing the co- 
operative behavior, but increases fitness of the other individual in the pair 
(Axelrod and Hamilton 1981; Boyd 1988). Each individual is characterized 
by an inherited strategy that determines how it will behave. Strategies may 
be fixed rules like, unconditional defection ("always defect"), or contingent 
ones like tit-for-tat ("cooperate during the first interaction; subsequently do 
whatever the other individual did last time"). The pair's two strategies de- 
termine the effect of the entire sequence of interactions on each pair mem- 
ber's fitness. An individual's contribution to the next generation is propor- 
tional to its fitness. 

Analysis of such models suggests that lengthy interactions between pairs 
of individuals are likely to lead to the evolution of reciprocity. Reciprocating 
strategies, like tit-for-tat, leading to mutual cooperation, are successful if 
pairs of individuals are likely to interact many times. A population in which 
unconditional defection is common can resist invasion by cooperative strate- 
gies under a wide range of conditions. However, there seem to be a variety 
of plausible mechanisms that allow reciprocating strategies to increase when 
rare. Axelrod and Hamilton (1981) and Axelrod (1984) have shown that a 
very small degree of assortative group formation, when coupled with the 
possibility of prolonged reciprocity, allows strategies like tit-for-tat to invade 
noncooperative populations. Other mechanisms have been suggested by 
Peck and Feldman (1985), Boyd and Lorberbaum (1987), and Feldman and 
Thomas (1987). 

Recent work suggests that these conclusions do not apply to larger 
groups. Joshi (1987) and Boyd and Richerson (1988) have independently 
analyzed a model in which n individuals are sampled from a larger popu- 
lation, and then interact repeatedly in an n-person prisoner's dilemma. In 
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this model, cooperation is costly to the individual, but beneficial to the group 
as a whole. This work suggests that increasing the size of interacting social 
groups reduces the likelihood that selection will favor reciprocating strate- 
gies. As in the two individual cases, if groups persist long enough, both 
reciprocal and noncooperative behavior are favored by selection when they 
are common. For large groups, however, the conditions under which reci- 
procity can increase when rare become extremely restrictive. Bendor and 
Mookherjee (1987) show that when errors occur, reciprocal cooperation may 
not be favored in large groups even if they persist forever. Boyd and Rich- 
erson (1989) derived qualitatively similar results in which groups were struc- 
tured into simple networks of cooperation. 

Intuitively, increasing group size places reciprocating strategies on the 
horns of a dilemma. To persist when common, they must prevent too many 
defectors in the population from receiving the benefits of long-term coop- 
eration. Thus, reciprocators must be provoked to defect by the presence of 
even a few defectors. To increase when rare, there must be a substantial 
probability that the groups with less than this number of defectors will form. 
This problem is not great when pairs of individuals interact; a relatively 
small degree of assortative group formation will allow reciprocating strate- 
gies to increase. As groups become larger, however, both of these require- 
ments can be satisfied only if the degree of assortment in the formation of 
groups is extreme. 

This result should be interpreted with caution. Modeling social inter- 
action as an n-person prisoner's dilemma means that the only way a recip- 
rocator can punish a defector is by withholding future cooperation. There 
are two reasons to suppose that cooperation might be more likely to evolve 
if cooperators could retaliate in some other way. First, in the n-person pris- 
oners' dilemma, a reciprocator who defects in order to punish defectors 
induces other reciprocators to defect. These defections induce still more 
defections. More discriminating retribution would allow defectors to be pe- 
nalized without generating a cascade of defection. Second, in the n-person 
prisoners' dilemma the severity of the sanction is limited by an individual's 
effect'on the whole group, which becomes diluted as group size increases. 
Other sorts of sanctions might be much more costly to defectors, and there- 
fore allow rare cooperators to induce others to cooperate in large groups. 

There is also a problem with retribution. Why should individuals punish? 
If being punished is sufficiently costly, it will pay to cooperate. However. 
by assumption, the benefits of cooperation flow to the group as a whole. 
Thus as long as administering punishment is Costly, retribution is an altruistic 
act. Punishment is beneficial to the group, but costly to the individual, and 
selection should favor individuals who cooperate but do not punish. This 
problem is sometimes referred to as the problem of "second order" coop- 
eration (Oliver 1980; Yamagishi 1986). 

A recent paper by Axelrod (1986) illustrates the problem of second- 
order cooperation. Azelrod analyzes a model in which groups of individuals 
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interact for two periods. During the first period individuals may cooperate 
or defect in an n-person prisoner's dilemma, and in the second, individuals 
who cooperated on the first move have the opportunity to punish those 
individuals who did not cooperate at some cost to themselves. Axelrod 
shows that punishment may expand the range of conditions under which 
cooperation could evolve. However, the strategy of cooperating but not 
punishing was precluded. As Axelrod notes, such second-order defecting 
strategies would always do better because second-order punishment of non- 
punishers is not possible. 

The problem of second-order cooperation has been partly solved by 
Hirshleifer and Rasmusen (1989). They consider a game theoretic model in 
which a two-stage game consisting of a cooperation stage followed by a 
punishment stage is repeated a number of times. They show that if punish- 
ment is costless, then the strategy of cooperating, punishing noncooperators, 
and punishing non-punishers is what game theorists call a "perfect equilib- 
rium." (The perfect equilibrium is a generalization of the Nash equilibrium 
which is useful in repeated games. See Rasmusen (1989) for an excellent 
introductory discussion of game theoretic equilibrium concepts.) Because it 
is a game theoretic model it does not provide information about the evo- 
lutionary dynamics. It also seems possible that if the model were extended 
to an infinite number of periods, a similar strategy would be evolutionarily 
stable even if punishment is costly. 

Here we consider evolutionary properties of an infinite period model 
of cooperation with the possibility of punishment that is similar to Hirshleifer 
and Rasmusen's. We will perform the analysis in three stages. First, we 
describe the basic structure of the model. Then, we consider populations in 
which there are cooperators who punish defection, and a variety of strategies 
which initially defect and then respond to punishment in different ways. The 
goal is to investigate the evolutionary dynamics introduced by retribution 
without the complications introduced by second-order defection and second- 
order punishment. Finally, we consider the effects of these complications. 

3. D E S C R I P T I O N  O F  T H E  M O D E L  

Suppose that groups of size n are sampled from a large population, and 
interact repeatedly. The probability that the group persists from one inter- 
action to the next is w, and thus the probability that it persists for t or more 
interactions is w '-1. Each interaction consists of two stages, a cooperation 
stage followed by a punishment stage. During the cooperation stage an in- 
dividual can either cooperate (C) or defect (D). The incremental effect of a 
single cooperation stage on the fitness of an individual depends on that in- 
dividual's behavior and the behavior of other members of the group as fol- 
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lows: Let the number of o t h e r  individuals choosing Cduring a particular turn 
be i. Then the payoffs to individuals choosing C and D are: 

V(CIi )  = (b /n) ( i  + 1) - c (1) 

V(Dl i )  = (b /n) i  (2) 

where b > c and c > b/n.  Increasing the number of cooperators increases 
the payoff for every individual in the group, but each cooperator would be 
better off switching to defection. (This special case of the n-person prisoners' 
dilemma has been used in economics and political science to represent pro- 
vision of public goods (Hardin 1982). It is also identical to the linear model 
of social interactions used in most kin selection models.) During the pun- 
ishment stage any individual can punish any other individual. Punishing an- 
other individual lowers the fitness of the punisher an amount k. and the 
fitness of the individual being punished an amount p. 

Each individual is characterized by an inherited "strategy" which spec- 
ifies how it will behave during any time period based on the history of its 
own behavior and the behavior of other members of the group up to that 
point. The strategy specifies whether the individual will choose cooperation 
or defection during the cooperation stage, and which other individuals, if 
any, it will punish during the punishment stage. Strategies can be uncon- 
ditional rules like the asocial rule "never cooperate/never punish." They 
can also be contingent rules like "always cooperate/punish all individuals 
who didn't cooperate during the cooperation stage." 

We assume that individuals sometimes make errors. In particular we 
suppose that any time an individual's strategy calls for cooperation there is 
a probability e > 0 that the individual will instead defect "by mistake." This 
is the only form of error we investigate. Individuals who mean to defect 
always defect, and individuals always either punish or do not punish ac- 
cording to the dictates of their strategy. 

Groups are formed according to the following rule: the conditional prob- 
ability that any other randomly chosen individual in a group has a given 
strategy St given that the focal individual also has S; is given by: 

Pr(SiISi)  = r + (! - r)qi (3) 

where q,- is the frequency of the strategy S; in the population before social 
interaction, and 0 < r < 1. The conditional probability that any other ran- 
domly chosen individual in a group has some other strategy S~- given that 
the focal individual has Si is given by: 

Pr(SjISi)  = (1 - r)q j  (4) 

When r = 0, social interaction occurs at random. When r > 0, social in- 
teraction is assortative. There is a chance r of drawing an individual with 
the same strategy as the focal individual and a chance 1 - r of picking an 
individual at random from the population (who will also be identical to the 
focal individual with probability equal to the frequency of the focal indivi- 
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dual's strategy in the population). If strategies are inherited as haploid sexual 
traits, r is just the coefficient of relatedness. For other genetic models, r is 
not exactly equal to the coefficient of relatedness. However, it is a good 
approximation for rare strategies and thus is useful for determining the con- 
ditions under which a rare reciprocating strategy can invade a population in 
which all defection is common. 

After all social interactions are completed, individuals in the population 
reproduce. The probability of reproduction is determined by the results of 
social behavior. Thus, the frequency of a particular strategy, Si, in the next 
generation, q~, is given by: 

qiW(Si) 
qi' - ~ q j W ( S / )  (5) 

i 

where W(Si) is the average payoffofindividuals  using strategy S; in all groups 
weighted by the probability that different types of groups occur. (As argued 
by Brown et al. 1982, this assumption is consistent with haploid genetic 
inheritance of strategies and some simple forms of cultural transmission.) 
We then ask, which strategies or combinations of strategies can persist? 

4. R E S U L T S  

4.1. No Second-Order Defection 

First we analyze the evolutionary dynamics of retribution with second-order 
defection is excluded. To do this, we consider a world in which only the 
following two strategies are possible. 

Cooperator-punishers (P). During each interaction (1) cooperate, and (2) 
punish all individuals who did not cooperate during the cooperation stage. 

Reluctant cooperators (RI). Defect until punished once, then cooperate for- 
ever. Never punish. 

We temporarily exclude strategies which cooperate, but do not punish 
to eliminate the possibility of second-order defection. We also exclude strate- 
gies that continue to defect after one act of punishment. This latter as- 
sumption is not harmless. We show in the appendix that if R~ is replaced 
by unconditional defection, then (1) cooperation is much less likely to evolve, 
and (2) R I may not be able to invade a population in which unconditional 
defection is common. The present analysis is justified for two reasons: First, 
it provides a best case for the evolution of cooperation, and second, there 
is abundant empirical evidence that organisms do respond to punishment. 

When groups are formed at random (r = 0), such a population can persist 
at one of three stable equilibria (or ESSs): 

* All individuals are R ~--no one cooperates. 
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• All individuals are P - - e v e r y o n e  cooperates.  
• Most individuals are R1, but a minority are P - - m o s t  are induced to 

cooperate  by the punishing few. 

In what follows we describe and interpret the conditions under which each 
of these ESSs can exist. Proofs are given in the appendix. 

Reluctant cooperators  resist invasion by the cooperating, punishing 
strategy whenever  the cost to a cooperator-punisher  of cooperating and pun- 
ishing n - 1 reluctant cooperators  exceeds the benefit to that punisher that 
results from the cooperat ion that is induced by its punishment. It can be 
shown that the responsive defecting strategy R I can be invaded by the co- 
operating, punishing strategy P as long as: 

1 ( w ( b -  c) e k ( n -  1 , )  
k (n  - 1) + (c - b / n ) <  1 - ~------~ 1 -- e . (6) 

initial cost of cooper- long run benefit induced 
ating and punishing by punishing 

When cooperator-punishers are rare, and groups are formed at random, vir- 
tually all cooperator-punishers will find themselves in a group in which the 
other n - 1 individuals are defectors.  The left-hand side of (6) gives the 
fitness loss associated with cooperating, and then punishing n - 1 defectors 
during the first interaction. The right-hand side of (6) gives the long-term 
net fitness benefit of  the cooperat ion that results from punishment. The term 
w(b  - c)/(l - w) is the long-term fitness benefit from the induced coop- 
eration by R1 individuals and the term proportional to e is the long-run cost 
that results from having to punish erroneous defections. Thus, if this term 
is positive, P can invade if w is large enough. 

If the cooperator-punisher  strategy, P, can increase when rare, punish- 
ing is not altruistic. Retribution induces cooperat ion that creates benefits 
sufficient to compensate  for its cost. The longer groups persist, the larger 
the benefit associated with cooperation.  Thus, as long as error rates are low 
or the benefits of  cooperat ion are large, longer interactions will permit co- 
operative strategies to invade, even if groups are formed at random. Also 
notice that the condition for R1 tO be invaded does not depend on p, the 
cost of being punished. As one would expect ,  increasing the group size of 
the error  rate make it harder  for the cooperative strategy to invade. 

The cooperating-punishing strategy, P, is evolutionarily stable as long 
a s  

e k ( n -  1) 
p ( n  -- 1) > c - b/n + 

(! - w ) ( l  - e )  (7) 

cost of being punished cost of  cooperating and punishing 

The first term on the right-hand side of (7) gives the cost of  cooperating 
during one interaction; the term on the left-hand side is the cost of being 
punished by n - 1 other  individuals, and the second term on the right-hand 
side is the cost of punishing mistakes over  the tong run. The rare R i indi- 
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FIGURE 1. The equilibrium frequency of P for a given expected number of inter- 
actions for different group sizes (n = 8, 16, 32) assuming that e - 0.001. For  these 
parameter values populations consisting of all P are always at a stable equilibrium. 
Populations without P individuals are also always an equilibrium, but it may be either 
stable or unstable. To find the polymorphic equilibria, pick a number of expected 
interactions and group size, and then determine the frequencies of P at which the 
horizontal line at that value of log(1/(l - w)) intersects the curve at that value of 
n. If the horizontal line lies below the curve for some qp, then the frequency of P 
increases; if it lies above the curve, the frequency of P decreases. Thus, if there is 
only one polymorphic equilibrium (e.g., n -- 4, log(l/(1 - w)) = 1), it is unstable 
and qp = 0 is stable. If there are two polymorphic equilibria (e.g., n = 16, log(I/1 
- w)) = 3), the polymorphic equilibrium with the lower frequency of P is stable, 
and the other potymorphic equilibrium and qp = 0 are both unstable. Finally, if there 
are no polymorphic equilibrium (e.g., n := 8, log(l/1 - w)) = 4), the only stable 
equilibrium is qp = 1. 

v idual  suffers  the  cos t  o f  p u n i s h m e n t ,  but  avo ids  the cos t  o f  c o o p e r a t i n g  on 

the first  tu rn  and the cos t  o f  pun i sh ing  e r r o n e o u s  de fec t ion  o v e r  the long 

run. No t i ce  that  this  cond i t i on  is i n d e p e n d e n t  o f  the long-run e x p e c t e d  ben-  

efit a s s o c i a t e d  with  c o o p e r a t i o n  (because  it does  not  con ta in  t e rms  of  the 

form b / ( l  - w ) ) .  It d e p e n d s  only  on the cos t  of  the c o o p e r a t i o n  to the 

ind iv idua l  and  the cos t s  o f  pun i sh ing  and  be ing  pun i shed .  Thus ,  r e t r ibu t ion  

can  s tab i l ize  c o o p e r a t i o n ,  but  this  s tab i l i ty  does  not  resul t  f rom the mutual  

benef i t s  o f  c o o p e r a t i o n .  

T h e r e  is a s tab le  in te rna l  equ i l ib r ium at which  bo th  P and R ] a re  p re sen t  

w h e n e v e r  (1) ne i the r  R]  nor  P are  E S S s ,  o r  (2) R] is not  an E S S  but  P is, 

and the cond i t i on  (24) (given in the  append ix )  is sat isf ied.  W e  have  not  been  

able  to de r ive  an e x p r e s s i o n  for  the  f r e q u e n c y  of  P at the  in terna l  equ i l ib r ium.  

F igure  1 s h o w s  the f r e q u e n c y  o f  P at this equ i l ib r ium d e t e r m i n e d  numer i ca l ly  

as a func t ion  o f  the  e x p e c t e d  n u m b e r  o f  in t e rac t ions  ( l o g ( 1 / ( l  - w))) for  

va r ious  g roup  s izes .  W h e n  g roups  pe r s i s t  for  on ly  a few in te rac t ions ,  bo th  

P a n d  R1 are  E S S s .  I nc r ea s ing  the  n u m b e r  of  in te rac t ion  even tua l ly  des ta -  

bi l izes  R ~, and  a l lows  a s tab le  in terna l  equ i l ib r ium to exis t .  F u r t h e r  i nc r ea se s  

in the e x p e c t e d  n u m b e r  o f  i n t e rac t ions  des t ab i l i ze  P leaving  the in ternal  

equ i l ib r ium as the  on ly  s tab le  equ i l ib r ium.  
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Without second-order defection, cooperation can persist at two quali- 
tatively different equilibria: either cooperative strategies coexist with non- 
cooperative strategies at a polymorphic equilibrium, or all individuals in the 
population are cooperative. When the cooperator-punisher strategy is very 
rare, it will increase whenever the benefit from long-run cooperation to an 
individual punisher exceeds the cost of the punishment necessary to induce 
reluctant cooperators to cooperate. As cooperator-punishers become more 
common, more reluctant cooperators find themselves in groups with at least 
one cooperator-punisher, and thus they enjoy the benefits of long-run co- 
operation without bearing the costs associated with punishing. Thus the 
relative fitness of cooperator-punishers declines. As cooperator-punishers 
become still more common, reluctant cooperators are punished more harshly 
during the initial interaction and their relative fitness declines. 

Assortative group formation has both positive and negative effects on 
the conditions under which punisher-cooperators evolve. When there is as- 
sortative group formation, individuals are more likely to find themselves in 
groups with others like themselves than chance alone would dictate. Such 
assortment decreases the cost of cooperating and punishing because co- 
operators are more likely to receive the benefits that result from the co- 
operative acts of others than are noncooperators, and because cooperator- 
punishers need to punish fewer noncooperators on the first interaction. How- 
ever, assortment decreases the long-run benefit associated with punishment 
because cooperator-punishers are more likely to be punished for erroneous 
defection. (Assortment increases the amount of punishment which an in- 
advertently defecting cooperator-punisher receives.) The second effect be- 
comes more pronounced the longer groups last because cooperator-punish- 
ers will make more errors. The negative effect will predominate whenever 
the following condition is satisfied: 

(l - e)(b/n + k) < ep (8) 
l - w 

When (8) is satisfied, assortment increases the range of conditions under 
which R ~ is an ESS, decreases the range of conditions under which P is an 
ESS, and, if a stable internal equilibrium exists, decreases the frequency of 
P at that equilibrium. Note that the negative effects increase as the expected 
number of interactions increase. When (8) is not satisfied, increasing r de- 
creases the range of parameters under which R~ is an ESS, increases the 
range under which P is an ESS, and may either increase or decrease the 
frequency of P at internal equilibria. 

4.2. Second-Order Defection 

When punishers are common, cooperation is favored because cooperative 
individuals avoid punishment, Thus; if punishment is costly, punishment 
may be an altruistic act. It is costly to the individual performing the pun- 
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ishment, but benefits the group as a whole. This argument suggests that 
individuals who cooperate, but do not punish, should be successful. In the 
previous model (and that of Axelrod 1986) cooperators always punish non- 
cooperators, and thus this conjecture could not be addressed. To allow for 
second-order defection, consider a model in which P and R t compete with 
the following strategy. 

Easy.going cooperator (E). Always cooperate, never punish. 

When second-order defection is possible, neither E nor P is ever an 
ESS. A population in which P is common can always be invaded by E, 
because easy-going cooperators get the benefits of cooperation without in- 
curring the cost of enforcement. A population in which E is sufficiently 
common can always be invaded by R~, because reluctant cooperators can 
enjoy the benefits of cooperation without fear of punishment. 

R~ is an ESS whenever punishment does not pay (i.e., (6) is not sat- 
isfied). At this ESS there is no cooperation because reluctant cooperators 
behave as unconditional defectors. If the long-run benefits of cooperation 
to an individual are not sufficient to offset the cost of coercing all the other 
members of the group to cooperate, the noncooperators can resist invasion 
by punishing or cooperating strategies. Persistent noncooperation is not the 
only possible outcome, however, under this condition. If P can resist in- 
vasion by R ~ (i.e., (7) is satisfied), then simulation studies indicate that there 
may be persistent oscillations involving all three strategies. Such oscillations 
seem to require that the cost of being punished is much greater than the cost 
of punishing (p -> k) and the benefits of cooperation barely exceed the cost 
(b ~ c). 

If punishment does pay, the long-run outcome is a mix of reluctant 
cooperators who coexist with punisher cooperators and, sometimes, easy- 
going cooperators. This can happen in three different ways: 

• There can be a stable mix of reluctant cooperators and cooperator- 
punishers. Such a stable equilibrium exists anytime there is a stable 
polymorphic equilibrium on the R~ - P boundary in the absence of 
E. If, in addition, P is not an ESS in the absence of E, this mixture 
of reluctant cooperators and cooperator-punishers is the only equi- 
librium, and numerical simulations suggest that the polymorphic equi- 
librium is globally stable. Thus, at equilibrium populations will consist 
of a majority of reluctant cooperators with a minority of cooperator- 
punishers. E cannot invade because rare E individuals often find them- 
selves in groups without a cooperator-punisher, and thus pay the cost 
of cooperation without receiving the long-run benefits of cooperation. 
Punishers in all groups received the benefits of long-term cooperation. 

• If there is no polymorphic equilibrium on the R~ - P boundary (i.e., 
in the absence of E), then there is a single interior equilibrium point 
at which all three strategies are present. We have not been able to 
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derive an expression for the frequencies of the three traits at these 
interior equilibria, nor determine when they are stable. Numerical 
simulation indicates that when an interior equilibrium exists, it is al- 
most always stable. 

* The mixture of al! three strategies can oscillate. When P is stable in 
the absence of E, the frequencies of the three strategies may oscillate 
indefinitely. Simulation studies suggest that this outcome only occurs 
under relatively rare parameter combinations. 

In each case, as group size increases, the average frequency of cooperative 
strategies typically declines to a quite low level. However, the average fre- 
quency of  groups with at least one P individual and therefore groups in which 
cooperation occurs over the long run, can remain at substantial levels even 
when groups are large. One must keep in mind, however, that this conclusion 
presupposes that individual punishers can afford to punish every nonco- 
operator in the group. A model in which the capacity to punish is limited 
would presumably stabilize at some higher frequency of punishers as group 
size increased. 

4 .3 .  M o r a l i s t i c  S t r a t eg ie s  

The results of the previous section suggest that strategies which attempt to 
induce cooperation through retribution can always be invaded when they 
are common by strategies which cooperate but do not punish. However, 
such is not the case. Consider the strategy: 

Moralists (M). Always cooperate, and punish individuals who are not in 
"good standing." Individuals are in good standing if they have behaved 
according to M since the last time they were punished or the beginning of 
the interaction. 

Thus, moralists punish individuals who do not cooperate. But they also 
punish those who do not punish noncooperators and those that do not punish 
nonpunishers. Each M individual punishes others at most once per turn~ 
Once an individual is punished, it can avoid further punishment by coop- 
erating, punishing noncooperators, and punishing nonpunishers (thus re- 
turning to good standing). 

Moralists can resist invasion by reluctant cooperators (R l) whenever 

( ) e(n-l)k 
w ( 1 - ( 1 -  e)"-l) > c -  b/n + ( 1 _  w)( l  - e )  (n - l )p  1 1 - w 

cost of beingpunished cost of cooperating and 
punishing 

(9) 

The left-hand side of (9)gives the cost to an R I individual of being punished. 
It is proportional to the number of interactions because such reluctant co- 
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operators are punished every time there is an error. The right-hand side is 
the cost of cooperating and punishing. Thus, as long as the error rate is not 
exactly zero, moralists can resist invasion by R j under a wider range of 
conditions that can P. 

Moralists can resist invasion by easy-going cooperators (E) whenever 
the following condition is satisfied: 

(1 - (1 - e ) " ) w p  > e k  (10) 

If errors occur only infrequently (ne  ~ 1), then this condition simplifies to 
become n w p  > k.  Thus, unless punishing is much more costly than being 
punished, moralists can resist invasion by easy-going cooperators. 

In fact, as Hirshleifer and Rasmusen (1989) have pointed out, moralistic 
aggression of this kind is a recipe for stabilizing a n y  behavior. Notice that 
neither condition (9) or (10) involves terms representing the long run benefits 
of cooperation (i.e., terms of the form b / ( !  - w)) .  When M is common, rare 
individuals deviating from M are punished; otherwise they have no effect 
on the behavior of the group. Thus, as long as being punished by all the 
other members of the group is sufficiently costly compared to the individual 
benefits of not behaving according to M, M will be evolutionarily stable. It 
does not matter whether or not the behavior produces group benefits. The 
moralistic strategy could require any arbitrary behavior--wearing a tie, 
being kind to animals, or eating the brains of dead relatives. Then M could 
resist invasion by individuals who refuse to engage in the arbitrary behavior 
unless punished as long as (9) was satisfied (where c - b in  is the cost of 
the behavior), and resist invasion by individuals who perform the behavior 
but do not punish others as long as (10) is satisfied. 

5. D I S C U S S I O N  

Our results suggest that problems of second-order cooperation can be over- 
come in two quite different ways: First, even though retribution creates a 
group benefit, it need not be altruistic. If defectors respond to punishment 
by a single individual by cooperating, and if the long-run benefits to the 
individual punisher are greater than the costs associated with coercing other 
group members to cooperate, then the strategy which cooperates and pun- 
ishes defectors can increase when rare, and will continue to increase until 
an interior equilibrium is reached. At this equilibrium the punishing strategy 
coexists with strategies which initially defect but respond to punishment by 
cooperating, and, sometimes, strategies which cooperate but do not punish. 
For plausible parameter values, the punishing strategy is rarer than the other 
two strategies at such an equilibrium. However, since a single punisher is 
sufficient to induce cooperation, cooperating groups are nonetheless quite 
common. 

Increasing group size reduces the likelihood that this mechanism will 
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lead to the evolution of cooperation because it increases the cost of coercion. 
This effect, however, is not nearly so strong as previous models in which 
defection was punished by withdrawal of cooperation. In those models (Joshi 
1987; Boyd and Richerson 1988, 1989) a linear increase in group size requires 
an exponential increase in the expected number of interactions necessary 
for cooperation to increase when rare. In the present model, the same in- 
crease in group size requires only a linear increase in the expected number 
of interactions. 

Moralistic strategies which punish defectors, individuals who do not 
punish noncooperators, and individuals who do not punish nonpunishers can 
also overcome the problem of second-order cooperation. When such strate- 
gies are common, rare noncooperators are selected against because they are 
punished. Individuals who cooperate but do not punish are selected against 
because they are also punished. In this way, selection may favor punishment, 
even though the cooperation that results is not sufficient to compensate 
individual punishers for its costs. 

It is not clear whether moralistic strategies can ever increase when rare. 
We have not presented a complete analysis of the dynamics of moralistic 
strategies because to do so in a sensible way would require the introduction 
of additional strategies, a consideration of imperfect monitoring of punish- 
ment, and a consideration of more general temporal patterns of interaction. 
We conjecture, however, that the dynamics will be roughly similar to the 
dynamics of P and R f in the case in which there is no stable internal equi- 
librium: Both defecting and moralistic strategies will be evolutionarily stable. 
Increasing the degree of assortment will mean that moralists will have fewer 
defectors to punish, but will be punished more when they err. Assortative 
social interaction wilt not interact with group benefits in a way that will allow 
moralistic strategies to increase. 

It is also interesting that moralistic strategies stabilize any behavior. 
The conditions which determine whether M can persist when rare are in- 
dependent of the magnitude of the group benefit created by cooperation. 
The moralistic strategy could stabilize any behavior equally well, whether 
it is beneficial or not. If our conjecture about the dynamics of M is correct, 
then the dynamics will not be strongly effected by whether or not the sanc- 
tioned behavior is group beneficial. 

This result is reminiscent of the "folk theorem" from mathematical 
game theory. This theorem holds that in the repeated prisoner's dilemma 
with a constant probability of termination (the case analyzed by Axelrod 
and most other evolutionary theorists) strategies leading to any pattern of 
behavior can be a game theoretic perfect equilibrium (Rasmusen 1989). The 
proof of this theorem relies on the fact that if there is enough time available 
(on average) for punishment, then individuals can be induced to adopt any 
pattern of behavior. Thus in games without a known endpoint, game theory 
may predict that anything can happen. This result, combined with the fact 
that nobody lives forever, has led many economists to restrict their analyses 
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to games with known endpoints. The diversity of equilibria here and in the 
nonevolutionary analysis can be regarded as a flaw or embarrassment for 
the analysis. 

We prefer to take these results as telling us something about the evo- 
lution of social behavior. Games without a known endpoint seem to us to 
be a good model for many social situations. Although nobody lives forever, 
social groups often persist much longer than individuals. When they do, 
individuals can expect to be punished up until their own last act. Even dying 
men are tried for murder, and in many societies one's family is also subject 
to retribution. If one accepts this argument, then it follows that moralistic 
punishment is inherently diversifying in the sense that many different be- 
haviors may be stabilized in exactly the same environment. It may also 
provide the basis for stable among-group variation. Such stable among-group 
variation can allow group selection to be an important process (Boyd and 
Richerson 1985, 1990 a,b) leading to the evolution of behaviors that increase 
group growth and persistence. 

6. C O N C L U S I O N S  

Cooperation enforced by retribution is strikingly different from reciprocity 
in which noncooperation is punished by withdrawal of cooperation. We think 
two features of this system are interesting and warrant further study: 

1. Cooperation may be possible in larger groups than is the case with re- 
ciprocity. This effect invites further study of the limitations on the ability 
of single individuals to punish, and how coalitions of punishers might or 
might not be able to induce reciprocity in very large groups. 

2. In the model studies here, punishers collect private benefit by inducing 
cooperation in their group that compensates them for punishing, while 
providing a public good for reluctant cooperators. There are often poly- 
morphic equilibria in which punishers are relatively rare, generating a 
simple political division of labor reminiscent of the "bigman" systems 
of New Guinea and elsewhere. This finding invites study of further pun- 
ishment strategies. Consider, for example, strategies that punish but do 
not cooperate. Such individuals might be able to coerce more reluctant 
cooperators than cooperator-punishers, and therefore support coopera- 
tion in still larger groups. If so, such models might help understand the 
evolution of groups organized by full-time specialized, "parasitical" coer- 
cive agents like tribal chieftains. 

The importance of the study of retribution can hardly be underesti- 
mated. The evolution of political complexity in human societies over the 
last few thousand years depended fundamentally on the development of a 
variety of coercive strategies similar to those we have investigated here. 
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A. A P P E N D I X  

A.1 .  Sensi t iv i ty  o f  the  M o d e l  to the R e s p o n s e  to P u n i s h m e n t  

The effects of  punishment on the evolution of cooperation are strongly af- 
fected by the extent  to which defector responds to punishment by cooper- 
ating. To see this consider a game in which cooperator-punishers (P) com- 
pete with the following nonresponsive strategy. 

Unconditional defectors (U). Never  cooperate.  Never  punish. 

Many of the evolutionary properties of the two-person repeated pri- 
soner 's dilemma can be derived considering a model in which only tit-for- 
tat (TFT, cooperate  on the first move, and punish each defection by de- 
fecting) and A L L D  (always defect) are present. Our strategies P and U seem 
like the natural generalizations of TFT  and A L L D  to the n-person game with 
punishment, and one might (as we did) expect  that their evolutionary dy- 
namics would be similar. This expectation is largely incorrect. Understand- 
ing why provides useful insight into the evolutionary effects of  punishment. 
For  simplicity, we assume that there are no errors (e = 0) throughout this 
section. 

Let  j be the number of  the other n - I individuals in the group who 
are P. The expected fitness of  U individuals given j is: 

V ( U I j )  - (b/n - p ) j  (11) 
1 - w 

Similarly, the expected fitness of P individuals given j is: 

V ( P [ j )  = b / n ( j  + I) - c - (n - 1 - j ) k  (12) 
I - w 

The expected fitness of  U individuals averaged overall groups is: 

n - - 1  

W ( U )  = ~ ,  m ( j [ U ) V ( U I j )  
j = 0 

b/n - p (13) 
= E ( j I U )  1 - w 

where m ( j l U  ) is the probability that there are j other cooperator-punishers 
given that the focal is an unconditional defector,  and E ( j  I U) is the expected 
value of j conditioned on the focal individual being U. An analogous cal- 
culation shows that 

W ( P )  = (b /n ) (E ( j  I e )  + 1) - c - (n - 1 - E ( j  I e ) ) k  (14) 
1 - w 
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When groups are formed at random E ( j  IP) = E ( j I U )  = (n - l)q where 
q is the frequency of P inthe population just before groups are formed. To 
determine when U is an ESS, let q ~ 0 and determine when W ( U )  > W(P).  

To determine when P is an ESS, let q ~ 1 and determine when W(U)  < 

W(P) .  When groups are formed assortatively and P is rare E ( j  [P) = (n - l)r 
and E ( j  [U) = 0. Combining these expressions yields the condition for P 
to increase when rare (16). 

If follows f rom these expressions for the fitness of U and P that (1) 
unconditional defection is always an ESS, and (2) P is an ESS only if: 

c - b/n < (n - l)p (15) 

The left-hand side of (15) is the per period cost to an individual of cooper- 
ating, and the right~hand side is the per period cost of being pumshed by 
n - 1 individuals. 

Superficially these properties seem analogous to the competition be- 
tween always,defect and tit-for-tat in the two-person model. Always-defect 
is always an ESS, tit-for-tat is an ESS only under certain conditions. How- 
ever, notice that (15) does not d©pend on the parameter w which measures 
the average number of interactions. Thus, if (15) is satisfied, P is stable even 
if individuals interact only once! In contrast, tit-for,tat is stable against al, 
ways-defect only if w is large enough that the long-run benefit of reciprocal 
interaction is ~ a t e r  than the short'term benefit of cheating. Tit'for-tat is 
never stable if individuals interact only once. 

The qualitative difference between the two models is made clearer if 
we consider the effect of assortative group formation. In the two,person 
case, assortative group formation makes it easier for tit-for-tat to increase 
when rare, and if w is near one, even a small amount of assortment is suf- 
ficient. In the present model, the punishing strategy, P, can increase when 
rare if 

(b/n)[r(n - 1) + 11 - c > (n - 1)(1 - r)k (16) 

inclusive fitness punishment 

The left-hand side gives the inclusive fitness advantage of cooperators rela- 
tive to defectors. If P individuals are sufficiently likely to interact with other 
P individuals (r ~ 1), then P can increase in frequency even when it is rare 
in the population because P individuals benefit from the cooperation of other 
P individuals in their groups. The fight-hand side gives the effect of pun- 
ishment on the fitness of P individuals. Notice that this term is always pos- 
itive. This means that cooperation supported by punishment is harder to get 
started in a population than unconditional cooperation. 

Why are these two models so different? tn models without retribution, 
reciprocal strategies such as tit-for-tat are favored because they lead to as- 
sortative interaction of cooperators (Michod and Sanderson 1985). Even if 
individuals are paired at random, the fact that tit-for-tat individuals convert 
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to defection if they experience acts of defection from others, causes a non- 
random distribution of cooperative behavior: tit-for-tat individuals are more 
likely to receive the benefits of cooperation than are always-defect individ- 
uals. In contrast, in the present model, punishment has no effect on who 
receives the benefits of cooperative behavior. P individuals continue to co- 
operate while they punish, and U individuals do not respond to punishment 
by cooperating--they keep defecting. Models of reciprocity without pun- 
ishment suggest that the strategy of punishing defectors by withdrawing 
cooperation is unlikely to work in large groups (Joshi 1987; Boyd and Rich- 
erson 1988). However, it is not unreasonable to imagine that a kind of con- 
ditional defector might respond to punishment by cooperating much as tit- 
for-tat responds to cooperation with more cooperation. 

A.2. Should Defectors Respond to Punishment? 

Should defecting individuals respond to punishment by cooperating? To ad- 
dress this question, we consider the conditions which R~ can invade a pop- 
ulation in which the strategy U is common. We further assume that groups 
are formed at random. 

Unfortunately, the answer to this question does not depend on the fit- 
ness consequences of alternative behaviors alone. It also depends on what 
kinds of punishing strategies are maintained in the population by nonadaptive 
processes like mutation and nonheritable environmental variation. In a pop- 
ulation in which only U and R ~ are present (and every individual accurately 
follows its strategy) U and R ~ will have the same expected fitness. Both will 
defect forever, and never be be punished because no punishing strategies 
are present. The strategies U and R1 will have different expected fitnesses 
only if there are punishing strategies present in the population. If U is com- 
mon, however, the expected fitness of any rare punishing strategy must be 
less than the expected fitness of U. This means that any punishing strategies 
present in the population must be maintained by nonadaptive processes like 
errors or mutation. R~ may or may not be able to invade depending on the 
mix of punishing strategies maintained by such forces. 

We conjecture that the most plausible source of nonadaptive variation 
is mistakes about the behavioral context. Modelers typically assume that 
there is a single behavioral context, with given costs and benefits, and an 
unambiguous set of behavioral strategies. However, in the real world, there 
are many behavioral contexts each with its own appropriate strategy. Before 
deciding how to behave individuals must categorize a particular situation as 
belonging to one context or another. It seems plausible that individuals some- 
times miscategorize situations in which punishment is not favored, and thus 
mistakenly punish others. Suppose, for example, selection favors individual 
retaliation if others damage personal property. Then individuals might some- 
times punish others who damage commonly held property because they mis- 
takenly miscategorize the behavior. 
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To prove that R I may or may not he about to invade U,  consider the 
second punishing strategy: 

T i m i d p u n i s h e r s  ( T D .  Always cooperate.  Punish each defector  the first time 
it defects, but only the first time. 

Suppose that both U and R occasionally mistakenly play one of  the 
punishing strategies. This could occur  because individuals mistake the be- 
havioral context  for one in which they would normally punish. The relative 
fitness of  U and R1 depends on which of  these two punishing strategies is 
present. Suppose that individuals occasionally play T, by mistake. R j can 
invade if a focal R I individual has higher fitness than a focal U individual 
in groups with one T, individual among the other n - 1. In such groups 

b / n  
W ( U )  - p 

l - -  W 

b / n  w 
W(R,) - p + - -  

1 - w  1 - w  

(17) 

( b / n  - c )  (18) 

and thus U is always favored if cooperat ion is costly. In contrast,  when P 
is present as a result of  errors,  the fitnesses of  the two types are 

W ( U )  = b / n  - p + 
W 

( b / n  - p )  (19)  
1 - w 

W 
- -  ( 2 b / n  - c )  (20! 
1 - w 

W ( R I )  = b / n  - p + 

and thus R1 is favored whenever  the costs of  punishment exceed the cost 
of cooperating. 

We think that this result is likely to be quite general. Consider a strategy 
that begins cooperating only after being punished some number of times. 
Such a strategy will have higher fitness than an unresponsive strategy only 
if the punishing strategies present in the population continue to punish on 
subsequent turns. If  they do not, the unresponsive strategy gets the benefit 
without paying the cost. When should punishing strategies give up? The 
answer to this question depends on whether  the defecting strategies will 
respond. If  defecting strategies are unresponsive,  costly punishment pro- 
vides no benefits. 

A . 3 .  E q u i l i b r i a  w h e n  R~ a n d  P C o m p e t e  

Let  j be the number of  P individuals among the other n - 1 individuals in 
a group. Then the expected fitnesses of  the two types are: 

W ( P )  = (l - e ) [ ( b / n ) ( E ( j l P )  + 1) - c] - k [ n  - 1 - (1 - e ) E ( j I P ) ]  

W 
- e p E ( j l P )  + I - w [ ( 1  - e ) ( b  - c )  - e k ( n  - l) - e p E ( j [ P ) ]  

(21} 
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W ( R , )  = [(b/n)(1 - e)  - p l E ( j l R ~ )  

w 

1 m w 

+ m [(1 - e ) (b  - c) - e p E ( j I R i ) ]  

w P r ( j  = 0[Rl) 

1 m W 
(I - e ) ( b  - c )  (22) 

where  P r ( j  = 01R~) is the probabi l i ty  that  an R~ individual finds itself in a 

group with exac t ly  zero  P individuals.  

W h e n  groups  are fo rmed  at r a n d o m  E ( j  I P )  = E ( j  IR~) = (n - 1)q and 

P r ( j  = 01R~) = (1 - q)n-~ where  q is the f r equency  of  P. Making these 

substi tut ions leads to the fol lowing condi t ion for  R j to increase:  

w 
(k + p ) (n  - 1)(1 - q) - - ( 1  - q)n-~ (b - c) 

1 - w 

e k ( n -  1) 
- b / n  + c - p ( n  - 1) + > 0 (23) 

(1 - w) ( !  - e)  

The condi t ion for  R~ to be an ESS  (7) is der ived by setting q = 0 in (23). 

The condi t ion  for P to be an ESS  (6) is der ived by setting q = 1 in (23). 
To derive the neces sa ry  condi t ions  for a stable internal equil ibrium, first 

notice that  the left-hand side o f  (23) is a concave  funct ion with, at most ,  a 

single internal max imum.  Thus ,  if nei ther  R l or  P is an ESS,  then there is 

a single internal equil ibrium point.  I f  R~ is not  an ESS  but P is, then there 

are two internal equilibria, one stable and the o ther  unstable,  if and only if 

the value o f  the left-hand side at that  max imum is greater  than zero.  The 

value o f  q that  maximizes  the left-hand side o f  (23) can be found by differ- 

entiation. Subst i tut ing this back  into (23) yields the following necessa ry  con-  

dition for  the exis tence o f  two internal equilibria: 

( (1  - ,  w ) ( k  + p ) )  '/rn-2~ 
w ( b - - -  c) (n - 2)(k + p)  > p ( n  - 1) 

e k ( n -  1) 
- c + b/n - (24) 

(1 - w)(1 - e) 

If this condi t ion is not  satisfied then P is the only ESS.  
To derive the condi t ion  for  R I to increase when groups  are fo rmed  

assor ta t ively  let E ( j l P )  = (n - l)(r + (1 - r )q)  and E ( j I R ~ )  = (n - I) 
(1 - r)q  and p roceed  in the same way  as above .  

A . 4 .  E q u i l i b r i a  w h e n  R l ,  E ,  a n d  P C o m p e t e  

Let  i and j be the number s  o f  E and P individuals among  the other  n - 1 
individuals. Then  

W ( P )  = (1 - e ) [ ( b / n ) ( E ( i l P )  + E ( j l P )  + I) - c] 

- k i n  I - (1 - e ) (E( i lP )  + E q I P ) ) ]  - e p E ( j l P )  (25) 

+ . . . .  × [(1 - e) (b  - c)  - e k ( n  - 1) - e p E ( j [ P ) ]  
[ , '  
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W ( R , )  = ( b / n ) ( l  - e ) ( E ( i l R , )  + E ( / I R , ) )  - p E ( j [ R , )  

+ 
W 

1 - -  14 ~ 
P r ( j  > 0[R, ) [ ( l  - e ) (b  - c) - e p E ( j l R , & j  > 0)] 

+ b 14,' 

l m ~4~ 
(I - e ) ( b / n ) P r ( j  = O I R , ) E ( i I R , & j  = O) 

(26) 

W ( E )  = (1 - e ) [ ( b / n ) ( E ( i l E )  + E ( j [ E )  + 1) - c] - e p E ( j [ E )  

+ - -  
14: 

1 - w t ~ ( j  > 0IE)[(I - e ) (b  - c)  - e p E ( j  IE&j > 0)1 (27) 

w 
+I - w (I - e)Pr(j = O]E)[(b/n)(E(i[E&j = O) + I) - c] 

A s s u m e  tha t  g roups  are  f o r m e d  at r a n d o m  so that  E(] [ E)  = E(] [P) :: 
E ( j l R , )  = (n - l)qp, E(i lE) = E ( i ~  p )  = E ( i ] R , )  = (n - 1)qL., P r ( j  = 0tE) 
= P r ( j  = 01R,) = (1 - q p ) ( ' - ' ) ,  and E ( i l R , &  j = O) = E ( i [ E & j  

= O) = (n - l ) ( q e / ( 1  - q? ) )  where  q e  and q p  are the f requenc ies  o f  E and 

P. W h e n q E  = 1, W ( E ) <  W ( R i ) a n d w h e n q p  = l, W ( P )  < W ( E ) .  

First ,  we der ive  condi t ions  for  the  ex i s t ence  of  an internal  equi l ibr ium,  
and show that  if such  an equi l ibr ium exis ts ,  it is unique.  

It is useful  to def ine  the fol lowing func t ions  which  give the  d i f ference  
in f i tness  b e t w e e n  each  pair  o f  s t ra tegies  as a funct ion of  q? ,  and qE: 

dz 'E(qP,qE)  = W ( P ) -  W ( E )  (28) 

dRE(qP ,qE)  = W ( R O -  W ( E )  (29) 

d e R ( q P , q E )  = W ( P )  - W ( R 1 )  (30) 

Using Eqs .  (25), (26), and  (27) and the a s sumpt ion  of  r a n d o m  group  
fo rmat ion  yields  the fol lowing exp re s s ion  for  dRE: 

d R E ( q P , q E )  = - p ( l  - e ) (n  - l)qz, (31) 

+ (1 - e ) (c  - b /n )  1 + 1 - w 

Not ice  that  the re la t ive  f i tness  of  R~ and E depends  only  on qe.  Fur ther .  
note  that  (1) tiRE(0, qE) > 0, (2) dR~ (1, qE) < 0 as long as c - b /n  < (n  - 

1)p which  is t rue  by  a s sumpt ion ,  and (3) t i r e  is a mono ton ica l ly  decreas ing  
funct ion o f  qp. Thus ,  the va lue  o f  qp at equi l ibr ium is unique and can  be 
found by  finding the root  o f  tiRE = 0 as shown  in Figure  2. Le t  this value 
of  q ?  be ~p. 

Once  again  using Eqs .  (25), (26), and (27) and  the a s sumpt ion  o f  r a n d o m  
group  fo rma t ion  yields  the fo l lowing expres s ion  for  ripE: 

- k e ( n -  1) 
d p E ( q p , q E )  - -  + k(1 - e) (n  - 1)(1 - q ~  - q p )  

1 - w 

w b ( n  - l)(1 - e)( l  - q p ) n - 2 ( 1  - q p  - qE) 
+ 

n(l  - w) 
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E 

R 1 

' ~ d ~  (qp,O) 

E ~ (qp,qE) = 0 

P R~ P 

~ d RE (tipS) 

FIGURE 2. This figure illustrates the logic of the proofs given in this section. The 
left-hand pair of figures represent a situation in which there is a single polymorphic 
equilibrium on the R~ - P boundary. The lower figure shows dnE(qp,O) and deE(qe,O). 
These curves intersect only once since there is a single polymorphic equilibrium. 
Thus, we know that q 'e  < 4e. The upper figure shows how the forms of dne(qe,qE)  
and dee(qe,qE) guarantee that there is no internal equilibrium in this case. The right- 
hand pair of figures represent the situation in which there is no polymorphic equi- 
librium on the R~ - P boundary because P increases for all values of qe < 1. 

A s s u m e  that qE is f ixed at some value.  T h e n  

- k e ( n -  1) 
- < 0  d e e ( l  - qE ,qE)  1 -- W 

and 

- ( n -  1)ke 
d e e ( O , q e )  - + (1 - qE)(1 -- e) (n  - -  

1 -- w 

Thus ,  d e e ( O , q E )  > 0 if 

qE < 1 - 

( 1  

k e  

- e ) ( w ( b / n )  - k(l  - w)) 

and 

(32) 

w ( b / n )  - k(1 - w) > 0 (33) 
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Otherwise dee <- O. Differentiating shows that dee is a convex function of 
qp. Thus if (32) and (33) are satisfied, dee(qe,qE) = 0 has a unique root for 
each qp as illustrated in Figure 2. Let  this root be q'e(qe). Increasing qL- 
leads to a decrease in q'P(qE). Thus there is a internal equilibrium value if 
and only if q',,,(O) > 4p, and if it exists, such an equilibrium is unique. This 
result is shown graphically in Figure 2. 

From the above we know that dRe(qp) is monotonically decreasing and 
has one root in the interval (0,1) whenever  R~ is potentially present, and 
that dee(q,,,) has at most one root and is monotonically decreasing in the 
interval that contains the root. 

Next,  we show that if there is no stable polymorphic equilibrium on the 
P - R j boundary in the absence of  E,  then there is an internal equilibrium. 
If there is no stable equilibrium on the boundary in the absence of  E. it 
follows from the results of  the previous section that 

deR(q,p,O) > 0 

for all q~,. Next ,  note that 

deR(qp,qe) = dee(qp,qe) - dRe(qt,,e) (34) 

Thus, there is an internal equilibrium since dee(qp,O) > dne(qe,O) for all 
values of qp. This situation is shown in the right-hand pair of  figures in Figure 
2. 

Next ,  we show that if there is a stable, polymorphic boundary equilib- 
rium such that qe = 0 and W(RO > W(P) for qe = 1, then there is no 
internal equilibrium. Let  q~, be the frequency of P at a polymorphic equi- 
librium on the P - R~ boundary.  Then deR(q*e,O) = 0 which implies that 

* * 0 dee(qe,O) = dRe(qp, ). The fact that the equilibrium is stable in the absence 
of E implies that OdpR(qe,O)/Oqp <0 at q~. Since dpR(1,0) < 0, it follows that 
deE(qe,O) < dRe(qt',O) for q~, < qe < 1. But this means that qj.(0) < qe,  and~ 
therefore, there is no internal equilibrium as shown in the left-hand pair of 
figures in Figure 2. 

It is important to note that there may be no internal equilibrium even 
if W(R~) < W(P). When this is the case there is a second, unstable internal 
equilibrium on the R~ - P boundary.  Anytime that dee = dRE < 0 at this 
equilibrium, there will be no internal equilibrium, and numerical studies 
suggest that this is what actually occurs at the vast majority of parameter  
combinations. 

A . 5 .  M is  a n  E S S  a g a i n s t  P a n d  E 

A s s u m e  that M is c o m m o n .  When groups are formed at random, M can 
resist invasion by rare R ~ individuals if the average payof f  o f  M in groups 
with n - 1 other M individuals,  V(MIn - 1) is greater than the average 
payof f  o f  R ~ in groups in which  the other n - 1 individuals are M, V(R j tn 
- I): 
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1 
V ( M I n  - 1) - 1 - ~  ((b - c)(1 - e)  - e ( n  - 1)(k + p ) )  (35) 

V ( R , I n  - 1) = ( n  - 1 ) ( b / n ) ( 1  - e )  - ( n  - l ) p  (36) 

+ 
W 

1 - w 
[ (1  - e ) ( b  - c )  - p ( n  - 1 ) ( 1  - (1 - e ) n ) ]  

S u b s t i t u t i n g  t h e s e  e x p r e s s i o n s  a n d  s i m p l i f y i n g  y i e l d s  (9). S i m i l a r l y ,  the  ex-  

p e c t e d  f i t n e s s  o f  a n  E i n d i v i d u a l  in a g r o u p  o f  n - I M i n d i v i d u a l s ,  V ( E I n  

- 1 ) ,  is: 

W 
V ( E I n  - 1) = (1 - e ) ( b  - c )  - e ( n  - 1)p + 1 - w 

× [(1 - e ) ( b  - c )  - e ( n  - 1 ) p  - p ( n  - 1)(1 - (1 - e)n)] (37) 

Th i s  e x p r e s s i o n  is u s e d  to  d e t e r m i n e  w h e n  V ( M I n  - 1) > V ( E I n  - 1) y i e l d s  

( I0) .  


