"Natural treatment" - includes the use of controlled mass culture of higher plants, artificial and natural wetlands

Incorporates some fundamental functional characteristics of natural systems into the design and operation of waste-water treatment systems

History of using aquatic plants for wastewater treatment

ecological x engineering approach

Types of wastewater:
- municipal - biodegradable organic matter, suspended solids, pathogens
- industrial - toxic substances
- agricultural run-off - nutrients, SS, pesticides
- mining run-off - acidity, heavy metals
- urban run-off - heavy metals

Three stages: (1) **Primary** - removes suspended solids (50-75%)
(2) **Secondary** - removes dissolved biodegradable organic material (BOD)
(3) **Tertiary** - removes inorganic nutrients

Processes involved in wastewater treatment:
- physico-chemical processes including sedimentation, sorption and precipitation
- volatilization
- bacterial transformations (oxidation by OM; nitrification/denitrification)
- direct nutrient uptake by plants

Types of natural systems used in WW-treatment:
- infiltration and overland flow - used since middle ages
- surface irrigation, flood irrigation, ridge and furrow irrigation
- floating macrophyte system
- constructed wetlands with macrophyte vegetation
Combination of macrophyte-based treatment system with conventional technologies

Constructed wetlands - use (mostly rooted) aquatic macrophytes
- greater potential for wastewater treatment than natural systems
- more controlled environment
 1) Surface flow (SF)
 2) Subsurface flow (SSF)

Criteria for plants used in wastewater treatment
- high mineral absorption capability
- extended growing and harvesting periods
- few natural pests
- easy of harvesting
- low water content
- high protein content (IF USED AS ANIMAL FEED)
- low fibre and lignin content

Types of plants used in wastewater treatment
- algae: Scenedesmus, Chlorella **NO**: Microcystis, Aphanizomenon
- floating macrophytes: duckweeds, water hyacinth
- creeping macrophytes: pennywort (Hydrocotyle spp.), parrotfeather (Myriophyllum aquaticum)
- submersed macrophytes: Potamogeton, Ceratophyllum
- emergent macrophytes: **reed** (Phragmites australis), **bulrushes** (Scirpus spp.), **cattails** (Typha spp.), arrowhead (Sagittaria latifolia), canna lily

Combination of several different species, growth forms
Very few of large variety of aquatic plants have been tested for pollutant removal capabilities

Advantages of using macrophyte-based wastewater treatment system as compared to conventional systems
low operating costs:

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>CWWT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction cost</td>
<td>$4,112,000</td>
<td>$3,664,000</td>
</tr>
</tbody>
</table>
Maintenance costs | 156,000 | 45,000
---|---|---

- plant biomass can be recycled
- creation of wildlife habitat (ONLY IF THE SYSTEM DOES NOT USE ANY TOXIC SUBSTANCES !!)

Health Consideration - water born pathogens
- mosquitoes

Regulations
National Pollution Discharge Elimination System (NPDES) permit issued by EPA
(administered by state, EPA oversight) - regulates water disposal to natural wetlands
Clean Water Act

Examples:
- City of Davis - overland flow
- Elk Grove Sacramento County Regional WW Treatment plant
- Santee CA - Scirpus, Typha, Phragmites; primary WW municipal
- Arcata, Humboldt Bay - secondary effluent
- Chevron, Richmond
- DUST marsh, Fremont near Coyote Hills

Reading: M&G 3rd edition Chapter 20