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Abstract

Public transit is often advocated as a means to address traffic congestion within urban trans-
portation networks. We estimate the effect of past public transit investment on the demand for
automobile transportation by applying an instrumental variable approach that accounts for the
potential endogeneity of public transit investment to a panel dataset of 96 urban areas across
the U.S. over the years 1991-2011. The results show that, after controlling for the underlying
factors that generate auto traffic growth, increases in public transit supply lead to a small overall
reduction in auto travel volumes. In the short run, when accounting for the substitution effect
only, we find that on average a 10% increase in transit capacity leads to a 0.8% reduction in auto
travel in the short run. However, in the longer run, when accounting for both the substitution
effect and the induced demand effect, we find that on average a 10% increase in transit capacity
is expected to lead to a 0.3% reduction in auto travel. We also find that public transit supply
does not reduce auto travel when traffic congestion is below a threshold level. Additionally,
we find that there is substantial heterogeneity across urban areas, with public transit having
significantly different effects on auto travel demand in smaller, less densely populated regions
with less-developed public transit networks than in larger, more densely populated regions with
extensive public transit networks.
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1 Introduction

Anyone who has idled in traffic anxiously watching the clock is all too familiar with the costs of

traffic congestion. Congestion is ubiquitous across urban roadways and is a persistent topic of policy

debate. The external costs of congestion – which include increased operating costs for both private

and freight vehicles, increased fuel usage and emissions, and, most significantly, the delay costs and

uncertain travel times confronting motorists – are substantial and have been steadily increasing. In

2011, these costs of traffic congestion alone have been estimated to have exceeded $121 billion in

the U.S. (Schrank et al., 2012). Congestion has steadily increased in recent decades: from 1983 to

2011, average car travel time increased by 30% and average transit travel time increased by 62.5%

(Berechman, 2009, pp. 123-125).

Congestion costs represent the majority of the external costs of automobile travel for urban com-

muters in the U.S.: of the combined per vehicle-mile costs of congestion, accidents, and environmen-

tal externalities for urban commuters in the U.S., congestion costs represent 71.7% of the short-run

average variable social cost of auto travel and 74.3% of the short-run marginal variable social cost

(Small and Verhoef, 2007, pp. 98).1

As one component of broader urban transportation policy, public transit is often advocated as a

means to decrease traffic congestion and reduce emissions from automobiles. Additionally, large-

scale public transit investments are often championed due to purported local and/or regional eco-

nomic development benefits accompanying the construction and operation of the new transit system.

In the U.S., in addition to annual transit operating expenses of $38 billion per year, recent expendi-

tures on public transit capital have exceeded $18 billion per year (American Public Transportation

Association, 2012 Fact Book).

Public transit investments should be evaluated on their contribution to overall net social welfare,

taking into account the cost of the investment and any associated operating subsidies. While the

broader question as to how public transit should be funded and its role in the U.S. urban trans-

portation sector is important and has been addressed by others such as Viton (1981) and Winston

and Shirley (1998), the congestion-reduction effect of public transit is a potentially important com-

ponent of this overall evaluation process, and to date there has not been an empirical consensus on

the magnitude of this effect.2

1
Similarly, of the externalities associated with gasoline consumption that Lin and Prince (2009) analyze in their
study of the optimal gasoline tax for the state of California, the congestion externality is the largest and should
be taxed the most heavily, followed by oil security, accident externalities, local air pollution, and global climate
change.

2
Beaudoin, Farzin and Lin Lawell (2017) develop a theoretical model of optimal public transit investment to evaluate
whether public transit investment has a role in reducing congestion in a second-best setting when a Pigouvian
congestion tax cannot be levied on auto travel.
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Although policymakers may wish to use public transit investment as a policy instrument to both

reduce congestion and spur economic activity, these two objectives are often incompatible.3 On the

one hand, an increase in transit supply may cause some commuters to substitute transit travel for

trips previously taken by automobile (the “substitution effect”); on the other hand, by reducing

congestion, increasing accessibility, and/or increasing economic activity, transit investment may

generate additional automobile trips that were previously not undertaken (the “induced demand

effect”). The “equilibrium effect” accounts for both the substitution effect and the induced demand

effect.

In this paper, we consider the effect of public transit supply on the volume of auto travel. Specifi-

cally, we address the following questions:

1. Have past public transit investments been effective in reducing the demand for automobile

travel in the U.S.?

2. Is it possible to disentangle the substitution effect and the induced demand effect due to

public transit supply?

We empirically estimate the effect of past public transit investment on the demand for automobile

transportation by applying an instrumental variable approach that accounts for the potential endo-

geneity of public transit investment to a uniquely created panel dataset of 96 urban areas across the

U.S. over the years 1991-2011. Our empirical results show that, after controlling for the underlying

factors that generate auto traffic growth, increases in public transit supply lead to a small overall

reduction in auto traffic congestion. In the short run, when accounting for the substitution effect

only, we find that on average a 10% increase in transit capacity leads to a 0.8% reduction in auto

travel in the short run across the 96 urban areas. However, in the longer run, when accounting for

both the substitution effect and the induced demand effect, we find that on average a 10% increase

in transit capacity is expected to lead to a 0.3% reduction in auto travel across the 96 urban areas.

We also find that public transit supply does not reduce auto travel when traffic congestion is below

a threshold level.

Additionally, we find that there is substantial heterogeneity across urban areas. When accounting

for the substitution effect only, the magnitude of the elasticity of auto travel with respect to transit

capacity varies from -0.02 in smaller, less densely populated regions with less-developed public tran-

sit networks; to -0.26 in the largest, most densely populated regions with extensive public transit

3
For example, employment growth, a common public policy goal, can lead to a number of unwanted environmental,
social, and economic costs – particularly in high growth communities – due to its impact on peak-hour traffic.
Morrison and Lin Lawell (2016) find that for each additional 10 workers added per square kilometer, travel time
increases by 0.171 to 0.244 minutes per one-way commute trip per commuter in the short run, which equates to
$0.07 to $0.20 in travel time cost per commuter per day.
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networks. When accounting for both the substitution effect and the induced demand effect, the

elasticity of auto travel with respect to transit capacity varies from -0.01 in smaller, less densely

populated regions with less-developed public transit networks; to -0.09 in the largest, most densely

populated regions with extensive public transit networks.

By using a broader set of urban areas over a longer time period than previous studies, and by

accounting for the regional heterogeneity across urban areas where transit investments occur, our

empirical analysis helps explain the previous literature’s seemingly conflicting empirical results on

the relationship between transit supply and traffic congestion.

The balance of our paper proceeds as follows. We review the related literature in Section 2. We

present our empirical models for analyzing public transit and the demand for automobile travel

in Section 3. We describe our data in Section 4 and present our results in Section 5. Section 6

concludes.

2 Literature Review

The link between pricing and investment in auto travel was recognized in the seminal papers by

Mohring and Harwitz (1962) and Vickrey (1969), with a recent treatment by Lindsey (2012). While

investment in roadway infrastructure may lead to short-term reductions in congestion, in the long

run it will be ineffective in the absence of efficient pricing, as improvements in travel conditions

will induce additional demand for auto travel (Hau, 1997). This predicted effect is known as the

‘fundamental law of traffic congestion’ and traces back to Downs (1962); it is analogous to the

Tragedy of the Commons associated with any non-excludable and congestible resource, and has

been demonstrated empirically by Duranton and Turner (2011), who show that auto travel vol-

umes increase proportionally with the available auto capacity.

The concept of induced auto travel following improved travel conditions is also applicable to invest-

ment in public transit. Increasing the relative attractiveness of transit travel may initially cause a

subset of commuters to switch from auto to transit. However, by reducing congestion, increasing

accessibility, and/or increasing economic activity, transit investment may generate additional au-

tomobile trips that were previously not undertaken. As Small and Verhoef (2007, pp. 174) note,

the introduction of Bay Area Rapid Transit (BART) service between Oakland and San Francisco

in the early 1970s led to 8,750 automobile trips being diverted to BART; however, 7,000 new au-

tomobile trips were subsequently generated, diminishing the net reduction in travel during peak

periods. Additionally, investments in mass transit may lead to localized economic development and

land-use changes, which even if considered to be ‘transit-oriented development’ may still generate

automobile trips that countervail potential traffic congestion reductions due to the initial cross-
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modal travel substitution (Stopher, 2004, pp. 125; Small and Verhoef, 2007, pp. 12).

Existing empirical studies of the relationship between public transit investment and traffic conges-

tion can be summarized as follows.4 Baum-Snow and Kahn (2005) estimate the effects of investment

in rail transit on the share of public transit ridership. They analyze 16 new and/or expanded rapid

rail transit systems in large, dense U.S. cities over the period 1970-2000. Their model suggests

that new rail service mostly leads to commuters switching from bus to rail and would not have a

significant effect on car ridership. They find that rail transit investment does not reduce congestion

levels and that variation in metropolitan area structure (primarily population density) both within

and between regions is an important factor leading to heterogeneous responses of commuters with

respect to mode choice following expanded rail service.

Winston and Langer (2006) analyze the effects of roadway expenditures on the cost of congestion in

72 large urban areas in the U.S. over the period 1982-1996. They find that rail transit mileage leads

to a decrease in congestion costs, but that increases in bus service actually exacerbate congestion

costs.

Winston and Maheshri (2007) examine 25 rail systems in the U.S. from 1993-2000. They estimate

that in 2000 these rail systems generated approximately $2.5 billion in congestion cost savings.

This estimate is derived by comparing observed congestion costs with those that would arise in

the counterfactual scenario where the rail systems were not constructed, based on the empirical

results of Winston and Langer (2006); their approach does not provide an estimate of the marginal

congestion reduction attributable to incremental changes in existing rail service levels. Nelson et al.

(2007) use a simulation model calibrated for Washington, DC and find that rail transit generates

congestion-reduction benefits large enough to exceed total rail subsidies.

Duranton and Turner (2011) are primarily interested in finding empirical support for the ‘fun-

damental law of traffic congestion’ mentioned above. They find convincing evidence of induced

demand: increases in road capacity are met with commensurate increases in auto travel. In the

course of their analysis, they also find that the level of public transit service does not affect the

volume of auto travel, though they do not estimate the effect on congestion per se. Controlling for

the potential endogeneity of transit service and auto travel, their analysis covers 228 Metropolitan

Statistical Areas in the U.S. for the three years 1983, 1993, and 2003.

Anderson (2014) uses a regression discontinuity design based on a 2003 labor dispute within the

Los Angeles transit system, finding that average highway delay increases by 47% when transit ser-

4
See Beaudoin, Farzin and Lin Lawell (2015) and Beaudoin and Lin Lawell (forthcoming) for detailed discussions
and comparisons of these studies.
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vice ceases operation. His model predicts that transit users are most likely those commuting along

the most congested corridors and since the marginal commuter in this case has a greater impact

on congestion than does the average commuter, transit users can potentially have a large impact

in terms of congestion reduction. His model also implies that heterogeneity in congestion levels

within a city leads to congestion reduction from transit roughly six times larger than when there

is homogeneous congestion levels facing commuters. As was the case with Winston and Maheshri

(2007), this provides strong evidence of the effects of transit on congestion at the extensive margin

(i.e. comparing the outcome of an existing transit network with the counterfactual absence of any

transit services), but in addition to only being a short-term effect that may potentially be specific

to the Los Angeles transportation network, it does not address the effect of transit on congestion

at the intensive margin (i.e. comparing incremental changes in the level of transit service provided

relative to the existing network).

Hamilton and Wichman (2016) study the impact of bicycle-sharing infrastructure on urban trans-

portation, and find that the availability of a bikeshare reduces traffic congestion upwards of 4%

within a neighborhood. They also estimate heterogeneous treatment effects using panel quantile

regression, and find that the congestion-reducing impact of bikeshares is concentrated in highly

congested areas.

Overall, the existing empirical evidence of the effect of transit investment on traffic congestion is

mixed. Anderson (2014) summarizes the literature by recognizing that while public transit service

may have a minimal impact on total travel volumes, it may still have a large impact on congestion

levels, depending on how induced demand occurs along the various margins of the travel decision

(whether to travel, which mode to use, which route to take, and the timing of the trip if taken).

The conflicting conclusions of previous studies may also be due to differences in empirical method-

ologies employed and the characteristics of the dataset used. Our paper adds further evidence to

this issue by using a broader set of urban areas over a longer time period than previous studies,

and the regional heterogeneity that our results indicate helps reconcile the literature’s seemingly

conflicting evidence.

3 Public Transit and the Demand for Automobile Travel

Figure 1 displays the growth in congestion and travel volumes for a representative urban area in

the U.S. over the past three decades, calculated using the population-weighted mean values across

96 large urban areas in the U.S., with the indices for 1982 values normalized to 1.00. On average,

the total hours of delay attributable to congestion have more than tripled over this period, associ-

ated with an 83% increase in auto travel and a 16% increase in transit travel. Travel times have
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increased by 16% over this same period, with the total delay hours being relatively higher due to

the growing population and more commuters being exposed to the congestion externality.

0.5

1

1.5

2

2.5

3

3.5

4

1982 1986 1990 1994 1998 2002 2006 2010

Traffic Congestion and Modal Growth: 
weighted by UZA, 1982-2011 (1982 = 1.00)

Travel Time Index Annual Hours of Delay

Auto Vehicle-Miles Transit Passenger-Miles

1.83

3.51

1.16

Figure 1: Congestion and travel growth for a representative urban area

Figure 2 provides an overview of U.S. public transit over the last two decades. During this time,

the volume of transit travel in the U.S. has increased by 43%. The overall transit network coverage

(directional route-miles) has increased by approximately 35%, while the capacity provided over

the network (vehicle-miles per directional route-mile) has increased by roughly 11%, yielding an

aggregate 50% increase in total vehicle-miles supplied over this period.

Some analysts (e.g., Rubin and Mansour (2013)) have argued that increased congestion in the

presence of increased public transit supply indicates that public transit is an ineffective tool to

reduce congestion. However, we must consider the counterfactual congestion that would exist in

the absence of this change in transit supply and assess congestion levels within the context of grow-

ing population and per capita income over time (see Noland (2001), Berechman (2009, pp. 148)

and Litman (2014) for a discussion of the underlying contributors to auto travel growth). These

considerations of induced demand are especially important in the equilibrium framework in which

we must evaluate public transit investment.

The ability of public transit supply to reduce congestion levels hinges on the degree to which auto

users switch to transit following a reduction in the cost of transit travel, when depends on both

the substitution effect and the induced demand effect. Morever, the incentive to substitute across

modes is subject to the regulations in place regarding urban auto travel; notably, the absence of

a tax on auto travel in congested conditions that distorts the ratio of the marginal private cost of
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Figure 2: Trends in transit travel, transit supply and traffic congestion

travel and the marginal social cost of travel across modes. To disentangle the effects of modal sub-

stitution and induced demand following transit supply increases, we estimate two different models

of the effect of transit supply on auto travel volumes.

3.1 Modal Substitution Effect

The level of public transit supplied in a region influences the demand for automobile travel in two

ways: (1) by determining the total volume of travel across the urban transportation network, and

(2) by influencing the modal distribution of trips across the transit and automobile modes. We

are interested in estimating the net effect of changes in the supply of transit on observed levels

of automobile travel, in the context of underpriced automobile travel and the absence of a tax on

congestion.

An increase in the supply of transit affects the relative cost of auto and transit travel. The marginal

private cost of auto travel is given by the sum of the monetary cost of auto travel (which includes

the variable out-of-pocket expenses such as fuel), the monetized value of time spent traveling, and

the per-unit tax levied on auto travel (if any). Similarly, the marginal private cost of transit travel

is given by the sum of the transit fare and the monetized values of the access, wait, and travel times

required for transit trips. Both the equilibrium volume of total travel and the modal distribution

of trips are functions of the equilibrium values of these generalized costs.

An increase in transit supply primarily reduces the access and wait times associated with public
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transit use, which has been demonstrated to have a much more significant effect on modal choice

than changes in monetary costs (Wardman, 2004). This reduction in the generalized cost of transit

travel may lead to a downward shift in the auto demand curve following an increase in transit

capacity, if the cross-elasticity between modes is positive. This substitution effect could occur in

the short run (due to marginal changes in the number of trips across modes) and/or in the long run

(due to structural changes in vehicle ownership rates and locational choices relating to residence

and employment).

To estimate the modal substitution effect, we analyze the effect that transit supply has on observed

auto traffic levels in region r at year t while controlling for factors that would lead to induced

demand. Our regression model for the substitution effect is given by:

Auto travelrt = β1·Transit Capacityrt + β2·Freeway Capacityrt + β3·Arterial Road Capacityrt

+ β4·Fuel Costrt + β5·Transit Farert

+ β6·Employmentrt + β7·Incomert + β8·Populationrt

+ β9·Yeart + β10·Year2
t + UZA Fixed Effects + εrt,

(1)

where the observed level of auto travel is measured as the number of vehicle-miles traveled per

freeway lane-mile, transit supply is measured as the total transit in terms of vehicle revenue-miles,5

and auto capacity is measured by the number of lane-miles (distinguishing between freeway and

arterial roads). The monetary cost of auto travel is measured by the fuel cost per vehicle-mile

traveled and the transit fare is the average per-trip fare revenue received. Socioeconomic and

regional control variables include employment rate, income, and population. A quadratic time

trend and urban area (UZA) fixed effects are also included. The standard errors are clustered at

the UZA level6 and this linear model is estimated via two-step GMM, as the model is overidentified.

For this model, our key parameter of interest is β1, the coefficient on transit capacity. Using a

panel of urban areas, we can estimate β1 using regional fixed effects to remove all time-invariant

effects that vary across regions and may influence the estimated effect of transit investment on

auto travel volume, such as the physical design of the transportation network, which is very slow to

evolve. Variation in travel volumes and transit levels within a region over time enables us to best

estimate the substitiution effect, given the differences in the structure and existing equilibria across

5
The level of transit supplied is measured most accurately by the total capacity of the network, given by the vehicle-
revenue miles of service provided (Small and Verhoef, 2007, pp. 11). It is not possible to separately identify the
effects of transit accessibility (directional route-miles) and transit capacity (vehicle revenue-miles) at the aggregate
level of the transportation network, given the significant collinearity of the two measures: the correlation between
these measures is 0.907 and there is very little spatial and temporal variation in vehicle revenue-miles traveled per
directional route-mile.

6
εrt are stochastic error terms, assumed to be independent and identically distributed across the panel. It is assumed
that E

(
εitεjs

)
= 0 for i 6= j, there are no restrictions placed on E (εitεis) , and εit may be heteroskedastic across

regions.

8



transportation networks, as the fixed effects absorb the heterogeneity in congestion and transit

levels unique to each region.

We obtain consistent estimates of β1 if cov
(
KT,rt, εrt|Xrt, ur

)
= 0, where Krt represents tran-

sit capacity in region r at time t, and Xrt represents auto capacity, modal prices and other

controls. The fixed effects model allows correlation between the regional fixed effect ur and

the level of transit investment KT,rt; however, if KT,rt is correlated with the time-varying er-

ror term εrt such that E
(
εrt|KT,rt, ur, Xrt

)
6= 0, then we need an instrument Zrt that satisfies

cov
(
Zrt, KT,rt|Xrt, ur

)
6= 0 and cov (Zrt, εrt|Xrt, ur) = 0 to consistently estimate βT .

3.2 Equilibrium Effect Accounting for Induced Demand

When increases in transit supply are considered in a dynamic context with no congestion tax in

place, the fundamental law of road congestion must be accounted for. In the presence of traffic

congestion, the congestion delay itself is a deterrent against further auto traffic growth, as the time

cost of commuting is high. If public transit capacity has a positive substitution effect whereby

auto users switch to transit, then this reduction in auto traffic leads to a reduction in auto travel

cost, which thereby induces latent demand for auto travel which counteracts the initial reduction in

traffic congestion. As a consequence, the supply of transit capacity is linked to the overall demand

for travel, but may have little or no effect on observed congestion levels in the long run.

A complementary view of the induced demand effect relies on a spatial equilibrium model of an open

urban city. In equilibrium, individuals must be indifferent across cities; in theory, any short-run

increase in income levels and/or decrease in transportation costs following improved transit supply

will induce migration into the city in the long run, until these differentials are eroded by increased

population and traffic congestion. Additionally, there may be positive agglomeration externalities

associated with large-scale transit projects, if there are network effects following accessibility im-

provements. Both of these effects would lead to an upward shift in the auto demand curve in the

long run.

To estimate the equilibrium effect accounting for both the substitution effect and the induced

demand effect, we remove as controls the factors associated with the induced demand effects of the

spatial equilibrium model: employment rates, income, and population. This allows us to estimate

the net effect of transit supply on equilibrium auto travel volumes once the mechanisms of induced

demand are factored in. Due to potential spatial heterogeneity, we control for the initial levels

of employment, income, and population in the base year of 1991. Our regression model for the
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equilibrium effect is given by:

Auto travelrt = α1·Transit Capacityrt + α2·Freeway Capacityrt + α3·Arterial Road Capacityrt

+ α4·Fuel Costrt + α5·Transit Farert

+ α6·Employment1991
r + α7·Income1991

r + α8·Population1991
r

+ α9·Yeart + α10·Year2
t + εrt.

(2)

For the equilibrium model, we do not employ UZA fixed effects, as we wish to allow for the effect of

transit capacity to lead to changes in regional structure over time. For this model, we use the panel

setting to exploit variations in transit supply and auto travel volumes within and across regions

over time. For this model, our key parameter of interest is α1, and the issues discussed regarding

the substitution effect apply to this model as well.

We expect the substitution effect to be non-positive, with β1 ≤ 0. Similarly, the induced demand

effect should be non-negative; depending on the values of the substition effect and the induced

demand effect, the net equilibrium effect could take on any value. The implied value of the induced

demand effect is then the difference between β1 and α1. An alternative interpretation is that the

net equilibrium effect of public transit supply on the volume of automobile travel depends on the

relative magnitudes of the short-run substitution effect and the longer-run induced demand effect.

3.3 Identification Strategy

Anderson (2014) identifies the effect of changes in transit supply on congestion along the extensive

margin by employing a regression discontinuity design. As we are interested in estimating the ef-

fect along the intensive margin relative to existing public transit supply, our identification strategy

relies on a panel data setting. We seek to identify the causal effect of public transit supply on auto

travel demand by exploiting both time series and cross-sectional variation in transit capital and

auto congestion levels and by using an instrumental variable to predict the supply of public transit

across urban areas of the U.S.

There are two potential sources of time-varying endogeneity between urban transportation invest-

ment and observed congestion levels that may lead to E
(
εrt|KT,rt, ur, Xrt

)
6= 0. First, there may be

an omitted variable bias, as transportation investment is more likely to occur in densely populated

urban areas that are also likely to have higher ex ante (and/or anticipated) levels of congestion.

Similarly, new investments may be used as a policy measure to address existing congestion and/or

as a component of a regional growth and development strategy; in both cases, we would expect con-

gestion and transportation investment to be positively correlated. This has been a prevalent issue
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in analogous studies evaluating the effects of road investment on auto travel. As Cervero (2002)

notes, “road investments are not made at random but rather as a result of conscious planning

based on anticipated imbalances between demand and capacity. This implies that, irrespective of

any traffic inducement effect, road supply will generally correlate with road use.” A second source

of endogeneity is that travel demand and congestion are simultaneously determined through the

speed-flow relationship and the generalized travel cost function.

To address the potential endogeneity of transit with respect to congestion, we instrument for pub-

lic transit investment. To identify the effect of transit investment on congestion, our instrument

must be correlated with the level of investment, while the exclusion restriction requires that our

instrument has no effect on congestion beyond the direct effect on public transit investment.

The instrument we use for public transit investment is the level of Federal funds provided for transit

capital in the region from two years prior. From 1991-2011, the regions studied received 66.7% of

capital funding and 17.3% of operating funding from Federal sources on average, with the remainder

via State and Local sources. As Libermann (2009, pp. 87) states: “...most [Federal] highway, transit

and safety funds are distributed through formulas that only indirectly relate to needs and may have

no relationship to performance. In addition, the programs often do not use the best tools or best

approaches, such as using more rigorous economic analysis to select projects.” Although local and

State funds may be correlated with unobserved factors affecting regional congestion, conditional on

time-invariant region-specific unobservables that are absorbed by the regional fixed effects, changes

in Federal funds two years ago are orthogonal to current changes in such potential factors. This

supposition is consistent with Berechman (2009, pp. 219-222):

“...the proclivity of local decision makers to accept a project regardless of its actual ben-
efits and risks increases with the proportion of funding obtained from higher levels...This
observation also explains why US federal subsidies to local public transit inherently pro-
vide incentives for selecting capital-intensive projects irrespective of their efficiency or
effectiveness...Our hypothesis states that local authorities, as recipients of federal and
state money, tend to regard external funding as “costless” and as political benefits.
They are therefore predisposed to promoting infrastructure projects containing a large
external funding component...this tendency promotes the implementation of inefficient
projects, selected without any regard for their social rate of return.”

There is little evidence that Federal transit funds have been directed towards the most congested

regions. As Figure 3 shows, there is no clear relationship between the growth in congestion experi-

enced by urban areas from 1991-2000 and the subsequent per capita Federal transit funds allocated

to the region in 2000-2011. Further, there appears to be a very limited tradeoff between Federal

transit funding and investment in roads.7

7
The correlation between auto freeway capacity per capita and Federal transit funding per capita is -0.17 for capital
funding and -0.10 for operating funding.
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Figure 3: Congestion growth and subsequent Federal transit funding

We are interested in estimating the effect of transit investment on auto travel demand, holding

fixed the level of auto capacity. While aggregate auto capacity has increased fairly steadily from

1991-2011, this growth rate is very low and Figure 4 shows that there is no evidence that this

investment has systematically occurred in the most congested regions. Overall, the road network of

the developed urban regions of the U.S. evolve very slowly and we view road capacity as exogenous

within our sample.

Conditional on urban area fixed effects and the other controls (population and income, in particu-

lar), our instrument is plausible, as there should not be any other significant economic changes that

are correlated with travel demand and changes in our instrument.8 To further test the validity of

our instrument, we also conduct underindentification and weak-instrument-robust inference tests,

and their results are reported along with our regression results below. The instrument passes these

various tests, and the first-stage Angrist-Pischke F-statistics are greater than 10. Tables A.5 and

A.6 in the Appendix show the first-stage regression results.

8
In our sample, there is very little residual correlation between congestion and the instrument after conditioning on
the other covariates in the model.
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Figure 4: Auto capacity investment and baseline congestion levels

4 Data

To estimate equations (1) and (2), we construct a panel dataset spanning 21 years from 1991 to

2011, covering 96 urban areas within 351 counties and 44 states across the U.S. An ‘urban area’

(UZA) is defined by the U.S. Census Bureau and refers to a region that is centered around a core

metropolitan statistical area (MSA). A UZA does not align directly with other geographic and/or

political boundaries; while each UZA has a core MSA, a UZA can be contained within multiple

MSAs, counties, and/or States, and a UZA is smaller in overall size than an MSA.

The Appendix contains details of the dataset. Table A.1 displays summary statistics, while Table

A.2 lists the regions included in the analysis and gives an overview of these regions across several

relevant characteristics. As Figure 5 shows, the UZAs included in the analysis are spread across

the U.S., and there is significant variation in the attributes of the UZAs. The average population

of the UZAs in 2011 was 1.8 million, ranging from 0.2 million in Brownsville, TX to 18.9 mil-

lion in New York-Newark, NY-NJ-CT. The average area was 501 square miles, with Laredo, TX

being the smallest at 43 square miles and New York-Newark being the largest at 3,353 square miles.

Data relating to the auto travel components of each UZA’s transportation networks are primarily

from the Texas Transportation Institute’s Urban Mobility Report (Schrank et al., 2012), which are

13
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Figure 5: Urbanized Areas included in the analysis
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the “best available means of comparing congestion levels in different regions and tracking changes

in regional congestion levels over time” (Downs, 2004, pp. 17). While we measure auto travel

as the daily vehicle-miles traveled per freeway lane-mile, Schrank et al. (2012) contains additional

measures of traffic congestion: the Travel Time Index, which measures actual travel time relative to

free-flow travel time; total annual hours of delay; percentage of peak vehicle-miles traveled under

congested conditions; and the Roadway Congestion Index, which measures the aggregate traffic

density of an urban area relative to the capacity of the transportation network.9 As seen in Table

A.3 in the Appendix, these various measures of congestion are highly correlated. Table A.4 in the

Appendix summarizes congestion levels across UZAs from 1991-2011. As presented and discussed

below, our empirical results are robust to the particular measure of congestion used.

The per-mile fuel cost of auto travel is derived from the Federal Highway Administration’s High-

way Statistics records. The average state-wide fuel efficiency in each year (gallons per vehicle-mile

traveled) is derived from the total gallons of fuel used and the annual vehicle-miles traveled in each

state. This value is then multiplied by the average cost of fuel (dollars per gallon) in the state

(from TTI’s Urban Mobility Report) to compute the cost of fuel on a per vehicle-mile basis. The

primary state of each UZA is used in assigning this value, as the underlying data are not available

at the UZA level, and the fuel price control variable can thus be considered exogenous with respect

to the congestion levels of the UZA. These current values are then converted to 2011 U.S. Dollars

via the Consumer Price Index.

Transit data are obtained from the Federal Transit Administration’s National Transit Database.10

For each UZA’s transit system, the network size is measured by directional route-miles and capacity

is measured by vehicle-revenue miles. Transit travel is measured by annual passenger-miles trav-

eled, while operating and capital funding is disaggregated by source (fares, Federal, State, Local,

and other). Our two measures of transit fares for the UZA are calculated by dividing total transit

fare revenue by (1) passenger-miles traveled on transit or by (2) the total number of unlinked tran-

sit trips. Since transit fares are very sticky, they are also assumed to be exogenous with respect

to the congestion level of the UZA.11 Operational transit data are distinguished by modal type -

fixed guideway modes with separate rights-of-way for the transit vehicle versus mixed traffic modes

that share the roadways with automobiles. The fixed guideway modes included are: commuter

rail, light rail, heavy rail, hybrid rail, monorail and automated guideway, and bus rapid transit.

The mixed traffic modes are: bus and trolleybus. We include fixed schedule service and exclude

demand-response modes (such as those typically provided for passengers with mobility issues). In

9
The Urban Mobility Report measures traffic delay using data from the U.S. Department of Transportation on
traffic volumes and the characteristics of the city (see Winston and Langer (2006), pp. 467 for discussion).

10
www.ntdprogram.gov/ntdprogram/data.htm.

11
Though some transit agencies differentiate peak and off-peak fares, there has been little variation in the average
transit fare over time.
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2011, the modes included in our analysis represent approximately 74% of vehicle-revenue miles and

97% of unlinked passenger trips across the UZAs in our analysis.

Socioeconomic data relating to employment rate, income, and population are compiled for the cen-

tral MSA comprising each UZA and obtained from the Bureau of Economic Analysis’s Regional

Data records.12

5 Empirical Results

We now discuss the empirical results from implementing the models outlined in Section 3.

5.1 Overall Results

Table 1 contains our baseline results from estimating the substitution effect using equation (1).

Specification (1) presents OLS estimates, while specifications (2) and (3) present the IV estimates

excluding and including UZA fixed effects, respectively.13 To interpret the coefficient estimates in

specification (3), which is our preferred specification, we also present the results of specification (3)

in terms of the average elasticity of auto travel with respect to the associated variable across the

96 UZAs.14

Our results for the substitution effect show that, after controlling for the underlying factors that

generate auto traffic growth, increases in transit capacity do lead to a reduction in traffic conges-

tion. The coefficient estimate for the substitution effect implies an average elasticity of auto travel

with respect to transit capacity of -0.08 across the 96 UZAs, with the 95% confidence interval for

this elasticity ranging from -0.03 to -0.12, which indicates that on average a 10% increase in transit

capacity is expected to lead to a 0.8% reduction in auto travel in the short run.

These elasticity estimates relate to a change in transit capacity along the intensive margin, which

may not extrapolate to large transit investments. At the individual level, there may be a diminish-

ing marginal modal substitution rate as the level of transit capacity increases, since those for whom

the initial generalized cost of transit travel only slightly exceeds the generalized cost of auto travel

will be the first induced to switch modes, and progressively larger reductions in transit travel costs

will be required to induce further modal substitution. Additionally, the estimated elasticity may

12
www.bea.gov/iTable/index.cfm under Local Areas Personal Income and Employment, Economic profiles (CA30).

13
The results of the first-stage regression are presented in Table A.5.

14
The elasticity of auto travel with respect to transit capacity referred to throughout this section is %∆Auto travel

%∆Transit capacity
;

holding auto capacity fixed, the elasticity of auto travel with respect to transit capacity reflects the change in auto
travel volume due to changes in transit supply.
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differ if the scale of the public transit network changes significantly; applying the Lucas critique,

the parameter estimates of the travel choices of individuals will depend on the characteristics of

the modal choices available to them when those choices are observed.

By comparing the OLS and IV coefficient estimates for the substitution effect in specifications (1)

and (3), respectively, of Table 1, we see that while ignoring the endogeneity of transit supply levels

still leads to a statistically significant negative coefficient on transit capacity, it would understate

the congestion-reduction benefit of transit by approximately 21%.15

There are several secondary results of interest. The elasticity of auto travel with respect to freeway

capacity is -0.34, implying that a 10% increase in road capacity leads to a 3.4% reduction in the

volume-to-capacity ratio. Since this effect is holding employment, income, and population constant

and removing the effect of the time trend, this suggests that there is still a small amount of induced

demand associated with capacity expansion beyond these underlying auto demand growth factors,

as a value of -1 would be expected if there were no induced demand. In comparing our results with

the induced demand effect found by Duranton and Turner (2011) – which would imply an auto

capacity coefficient of 0 in our model – it should be noted that their estimate should be interpreted

as a long-run elasticity (as their observations occur at 10-year intervals), whereas our elasticity is

a short-run elasticity based on annual data.

The price of transit travel (as represented by the transit fare) is found to have no effect on the level

of congestion. While the previous literature (Glaister and Lewis, 1978; Parry and Small, 2009)

shows that there is theoretical justification for transit fare subsidization if auto travel is under-

priced, the result is consistent with their conclusion that transit fare subsidies will nonetheless have

a minimal effect on equilibrium congestion levels due to a very low cross-price elasticity of auto

demand with respect to transit fares (Button, 1990).16

The price of auto travel (as represented by the fuel price) is found to have a small or insignificant

effect on auto travel volumes. This result is unsurprising, as the low elasticity of auto travel de-

mand with respect to fuel prices has been well documented: Graham and Glaister (2004) survey

the literature and summarize the elasticity of auto travel with respect to fuel price as -0.15 in the

short run and -0.31 in the long run. The fuel price does not vary by time and location, and aside

from the effect of congestion on per-unit fuel consumption, is largely independent of the degree of

15
A Hausman test rejects the null hypothesis that transit capacity is exogenous, and a Davidson-MacKinnon test of
exogeneity soundly rejects the null hypothesis that OLS would yield consistent estimates of the coefficients.

16
Additionally, since existing transit fares are generally below average cost (indicated by the sizable operating subsidy
provided to transit agencies), our estimate of the effect of transit fares is for a marginal change relative to the
existing (subsidized) fare, which could be expected to have a small influence at the margin on transit ridership, as
the transit fare is a relatively low fraction of the total generalized cost of transit travel.
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congestion; as a result, this should not be construed as indicating that road pricing would not be

an effective tool in addressing congestion.

Population growth appears to be the main determinant of auto travel increases; the elasticity of

auto travel with respect to population is 0.47. The average elasticity of auto travel with respect

to the employment rate and to per capita income are 0.40 and 0.27, respectively. The quadratic

time trend indicates that congestion growth has had an underlying concave trend over the past two

decades.

Table 2 contains our baseline results from estimating the equilibrium effect, which includes the

potential for induced auto demand following transit supply increases, using equation (2). Specifi-

cation (1) presents OLS estimates, while specification presents the IV estimates, respectively.17 To

interpret the coefficient estimates in specification (2), which is our preferred specification, we again

present the results of specification (2) in terms of the average elasticity of auto travel with respect

to the associated variable across the 96 UZAs to facilitate comparisons.

The coefficient estimate for the equilibrium effect implies an average elasticity of auto travel with

respect to transit capacity of -0.03 across the 96 UZAs, with the 95% confidence interval for this

elasticity ranging from -0.04 to -0.02. This indicates that on average a 10% increase in transit

capacity is expected to lead to a 0.3% reduction in auto travel in the longer term once the induced

demand effect is also accounted for.

Our auto capacity elasticity estimates from the equilibrium model are consistent with the funda-

mental law of congestion results in Duranton and Turner (2011), as our elasticity on freeway capac-

ity is near zero, which implies a near constant volume-to-capacity ratio for freeway travel over time.

5.2 Spatial Heterogeneity

Urban areas vary significantly across several characteristics that may influence the effect of tran-

sit supply on auto travel volumes. The distributions of these key characteristics across UZAs are

shown in Figure 6.

In particular, the ability of transit investment to reduce auto congestion depends on several factors

that may vary across regions: the extent of existing congestion, the magnitude of auto demand

shifts in response to changes in the generalized cost of transit travel, and the characteristics of

the regional transportation network. To examine the potential heterogeneity of the congestion-

reduction benefit of transit across UZAs, we compare the elasticities of auto travel with respect to

17
The results of the first-stage regression are presented in Table A.6.
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Table 1: Substitution Effect (Baseline Results)

Dependent variable is Daily Auto VMT per freeway lane-mile (000s)

Coefficient Avg. Elasticity

(Std. Err.) (95% C.I.)

(1) OLS (2) IV (3) IV (3) IV

Transit capacity -0.033∗∗∗ -0.042∗∗∗ -0.042∗ -0.08∗∗∗

(total vehicle revenue-miles, millions) (0.009) (0.003) (0.020) (-0.12, -0.03)

Auto capacity: freeways -4.402∗∗∗ -0.374∗ -4.418∗∗∗ -0.34∗∗∗

(total lane-miles, thousands) (0.506) (0.161) (0.564) (-0.38,- 0.29)

Auto capacity: arterials -0.114 -0.726∗∗∗ -0.083 0.03

(total lane-miles, thousands) (0.231) (0.133) (0.247) (-0.01,0.07)

Fuel price 1.862 -5.779 2.190 -0.07∗∗∗

($ per vehicle-mile) (1.879) (3.129) (1.742) (-0.08, -0.05)

Transit fare 0.062 -0.226 0.057 0.00

($ per unlinked trip) (0.073) (0.184) (0.061) (-0.00, 0.01)

Employment rate 1.764 -2.285 -1.136 0.40∗∗∗

(total employed per capita) (2.690) (1.186) (2.844) (0.27, 0.52)

Income 0.034 0.138∗∗∗ 0.050∗ 0.27∗∗∗

(real per capita income) (0.026) (0.011) (0.025) (0.19, 0.36)

Population 4.100∗∗∗ 2.907∗∗∗ 4.270∗∗∗ 0.47∗∗∗

(millions) (0.591) (0.278) (0.968) (0.37, 0.56)

Time trend (quadratic) Yes Yes Yes Yes

UZA fixed effects Yes No Yes Yes

N 1997 1802 1802 1802

R
2

0.625 0.501 0.565 0.565

p-val. (Prob > F) 0.000 0.000 0.000 0.000

First-stage test statistics

First-stage AP F-stat, Transit Capacity - 106.05 13.79 13.79

Kleibergen-Paap underidentification test: p-val. - 0.000 0.029 0.029

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. - 0.000 0.035 0.035

Anderson-Rubin Wald χ
2

test: p-val. - 0.000 0.031 0.031

Notes: Robust standard errors in parentheses; clustered by UZA. In (2)-(3), transit capacity instrumented by:

Federal transit funding in UZA, lagged two periods.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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Table 2: Equilibrium Effect with Induced Demand (Baseline Results)

Dependent variable is Daily Auto VMT per freeway lane-mile (000s)

Coefficient Avg. Elasticity

(Std. Err.) (95% C.I.)

(1) OLS (2) IV (2) IV

Transit capacity -0.020∗∗∗ -0.016∗∗∗ -0.03∗∗∗

(total vehicle revenue-miles, millions) (0.002) (0.002) (-0.04, -0.02)

Auto capacity: freeways 0.628∗∗∗ 0.485∗ 0.03∗

(total lane-miles, thousands) (0.176) (0.193) (0.01,0.05)

Auto capacity: arterials 0.254∗∗ 0.399∗∗∗ 0.07∗∗∗

(total lane-miles, thousands) (0.088) (0.109) (0.03,0.11)

Fuel price 8.256∗ -1.152 -0.01

($ per vehicle-mile) (3.464) (3.340) (-0.06, -0.04)

Transit fare -0.240 -0.215 -0.02

($ per unlinked trip) (0.147) (0.151) (-0.03, 0.00)

Employment rate (1991 value) -2.878∗ -4.089∗∗ -0.17∗∗∗

(total employed per capita) (1.284) (1.384) (-0.27,-0.08)

Income (1991 value) 0.133∗∗∗ 0.150∗∗∗ 0.37∗∗∗

(real per capita income) (0.014) (0.0.015) (0.30, 0.44)

Population (1991 value) 0.606∗∗∗ 0.329 0.03

(millions) (0.146) (0.192) (-0.01, 0.07)

Time trend (quadratic) Yes Yes Yes

UZA fixed effects No No No

N 1997 1802 1802

R
2

0.458 0.413 0.413

p-val. (Prob > F) 0.000 0.000 0.000

First-stage test statistics

First-stage AP F-stat, Transit Capacity - 187.24 187.24

Kleibergen-Paap underidentification test: p-val. - 0.000 0.000

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. - 0.000 0.000

Anderson-Rubin Wald χ
2

test: p-val. - 0.000 0.000

Notes: Robust standard errors in parentheses; clustered by UZA. In (2)-(3), transit capacity instrumented by:

Federal transit funding in UZA, lagged two periods.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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transit capacity when the models in equations (1) and (2) are applied to a variety of sub-samples

in the data, according to characteristics of the region and the transportation network.18 Table 3

summarizes these results for both the substitution effect and the equilibrium effect. Note that the

substitution effect is consistently 3-4 times as large as the equilibrium effect. The sizable differ-

ences across regions imply that the observed effects of transit investment in one region may not

generalize to another region, so comparison groups should be considered carefully when forecasting

future effects of potential transit investments.

5.2.1 Regional Characteristics

We first consider the impact of the population size and density of the UZA on auto congestion, as

measured by the daily auto vehicle-miles traveled per freeway lane-mile.

Existing congestion level

Our previous results outline the average marginal effect of transit supply on auto travel. We now

consider the extent to which this marginal effect varies according to the level of auto travel oc-

curring in a given region. For both the substitution effect and the equilibrium effect, there is a

threshold value for the level of traffic congestion above which public transit supply begins to po-

tentially reduce auto travel, as shown in Figure 7.
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Figure 7: Elasticity of auto travel with respect to transit capacity vs. congestion level

For values below this threshold, transit capacity does not influence auto travel demand, but once

the volume of auto travel exceeds this threshold, the magnitude of the elasticity of demand for au-

18
For each characteristic discussed below, the UZAs are stratified according to each UZA’s mean values of that
characteristic over the panel duration; as a result, the decile each UZA is in for a particular characteristic is held
fixed over time.
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Table 3: Elasticity of auto travel with respect to transit capacity

Substitution Effect Equilibrium Effect

Sample Avg. Elasticity in Sample Avg. Elasticity in Sample

(obs) (95% Confidence Interval) (95% Confidence Interval)

Full sample

OLS −0.048 −0.033

(1997) (−0.059,−0.036) (−0.040,−0.027)

IV −0.078 −0.027

(1802) (−0.124,−0.033) (−0.036,−0.018)

Population

Above Median −0.140 −0.049

(919) (−0.222,−0.057) (−0.064,−0.033)

Below Median −0.014 −0.004

(883) (−0.022,−0.007) (−0.006,−0.003)

Density

Above Median −0.121 −0.043

(937) (−0.194,−0.047) (−0.057,−0.029)

Below Median −0.032 −0.010

(865) (−0.049,−0.016) (−0.013,−0.007)

Rail Service?

Yes −0.204 −0.072

(535) (−0.328,−0.080) (−0.095,−0.049)

No −0.025 −0.008

(1267) (−0.038,−0.013) (−0.010,−0.005)

Yes −0.258 −0.093

Rail Service Established (377) (−0.419,−0.096) (−0.123,−0.063)

Prior to 1991? No −0.031 −0.009

(1425) (−0.046,−0.016) (−0.012,−0.007)

% Fixed Guideway Transit

High −0.192 −0.068

(579) (−0.309,−0.076) (−0.090,−0.046)

Low −0.025 −0.007

(1223) (−0.037,−0.012) (−0.010,−0.005)

Transit Accessibility

Above Median −0.118 −0.042

(923) (−0.192,−0.045) (−0.055,−0.028)

Below Median −0.037 −0.011

(879) (−0.054,−0.019) (−0.015,−0.008)

Transit Capacity

Above Median −0.138 −0.048

(912) (−0.221,−0.056) (−0.063− 0.033)

Below Median −0.017 −0.005

(890) (−0.026,−0.009) (−0.007,−0.004)

Transit Usage

Above Median −0.139 −0.048

(886) (−0.222,−0.057) (−0.064,−0.003)

Below Median −0.020 −0.006

(916) (−0.030,−0.010) (−0.008,−0.004)

tomobile travel with respect to transit capacity increases with the demand for automobile travel.19

19
Our result that the elasticity varies with congestion provides support for our choice not to estimate a log-log
regression model, which assumes that the elasticity does not vary with congestion.
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Population size

As population increases, the number of commuters for whom transit is the most desirable (or only)

mode of travel is also likely to increase. In large cities, the marginal external effect of the mode

choice of an individual traveler is also higher, given the convexity of the congestion externality.

Taken together, it is predicted that public transit will lead to a more significant reduction in con-

gestion as the city size increases.

There is significant variation in population across the UZAs: in 2011, the mean population was

1.76 million, ranging from a low of 0.21 million in Brownsville, TX to a high of 18.95 million in

New York-Newark, NY-NJ-CT. Table A.7 in the Appendix summarizes the relationship between

various congestion measures and the population of the UZA, indicating that congestion is most

prevalent in the largest regions, as expected.

Figure 8 plots our estimates of the elasticity of auto travel with respect to transit capacity when

the model in equations (1) and (2) is stratified according to population deciles. The results indicate

that transit is likely to have a minimal impact on congestion at lower population levels, but has a

sizable impact for the most populous UZAs, suggesting that a threshold UZA size is required for

transit to have a beneficial effect in the auto market.
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Figure 8: Elasticity of auto travel with respect to transit capacity vs. population size

Population density

The population density of the UZA is expected to have an effect similar to the scale of the popu-

lation. The average UZA in the sample had a population density of 3,311 people per square mile

in 2011, with Knoxville, TN having the lowest density at 1,499 and Los Angeles, CA having the
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highest at 7,931.20 Table A.8 in the Appendix shows that congestion increases with population

density, but the dispersion between low- and high-density regions is somewhat less than is the case

for low- and high-population regions. Figure 9 plots our estimates of the elasticity of auto travel

with respect to transit capacity when the models in equation (1) and (2) are stratified according

to population density deciles. The relationship follows a similar pattern to that above for total

population size.
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Figure 9: Elasticity of auto travel with respect to transit capacity vs. population density

5.2.2 Transportation Networks

We next investigate whether there is spatial heterogeneity in the congestion-reduction effects of

transit supply in terms of the characteristics of the transportation network.

Rail service

Regions with rail service are expected to experience a more beneficial effect of transit supply on

congestion, as fixed guideway modes may be more competitive with auto travel for a larger subset

of commuters than are mixed traffic modes. Over the study period, 28.7% of observations relate

to UZAs with rail service in that year. 20 of the 96 UZAs had rail throughout the entire period,

while 16 UZAs initiated rail service between 1991-2011, implying that 36 UZAs had rail in 2011.

Accordingly, 60 UZAs have not had rail service at any point in time. Table A.9 in the Appendix

shows that rail systems tend to be located in the more congested regions. Separating the regions

according to whether they had rail service prior to 1991 yields very similar results. According to

our results in Table 3, on average the elasticity of auto travel with respect to transit capacity is

20
For the population density stratification, we have excluded Oxnard, CA, which appears to be an outlier along this
dimension with a population density of 9,342. The results of the population density stratification are robust to
whether Oxnard, CA is excluded.
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nearly 10 times higher in regions with rail service than in regions without.

Transit type

Similarly, we differentiate regions according to the proportion of total transit capacity supplied by

fixed guideway modes. In 2011, 8.5% of total vehicle-revenue miles was provided by fixed guideway

modes; 57 UZAs had no fixed guideway service, while the New York UZA had the highest percent-

age of fixed guideway transit at 66.1%. Table A.10 in the Appendix shows that fixed guideway

transit occurs most prominently in higher-congested regions. It is possible that fixed guideway

modes – that may have a greater effect on modal demand substitution and do not interact with

auto traffic – can be expected to reduce traffic congestion, while mixed traffic modes may not.

According to our results in Table 3, regions with a high proportion of fixed guideway transit have

an elasticity of auto travel with respect to transit capacity approximately 10 times as large as those

regions with a low proportin of fixed guideway transit.

Transit accessibility

Transit accessibility represents the extent to which the transit system has developed in a region,

and is measured here by the directional-route miles of service provided per square mile. In 2011,

the average UZA had 4.1 directional-route miles per square mile, ranging from a low of 0.7 in

Winston-Salem, NC to a high of 34.2 in Stockton, CA. Greater transit accessibility is expected

to lead to a higher likelihood of modal substitution when an increase in transit supply lowers the

generalized cost of transit travel. Table A.11 in the Appendix shows that the accessibility of public

transit is highest in the most congested regions. According to our results in Figure 10, there are

network effects associated with transit investment; at the margin, transit supply increases are most

effective at reducing congestion in transit networks that are already relatively well-developed.

Transit capacity

We measure transit capacity by the per capita vehicle-revenue miles of transit service provided,

which is another indication of the degree of transit network development. In 2011, the average

value across UZAs was 9.4 vehicle-revenue miles per capita, ranging from a low of 1.7 in McAllen,

TX to a high of 43.4 in New York. Table A.12 in the Appendix indicates that the highest public

transit service frequency occurs in the most congested regions. As was the case with transit accessi-

bility, Figure 11 illustrates that additional transit service capacity generates the greatest marginal

congestion reduction in regions that have a high pre-existing supply of public transit.
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Figure 10: Elasticity of auto travel with respect to transit capacity vs. transit accessibility
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Figure 11: Elasticity of auto travel with respect to transit capacity vs. transit capacity
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Transit usage

Lastly, we consider how the existing rate of transit ridership influences the effect of transit supply

on congestion. The relative transit usage of a region is measured by the ratio of transit passenger-

miles traveled to auto vehicle-miles traveled. Table A.13 in the Appendix indicates that the modal

travel share of transit is positively correlated with the level of congestion. According to our results

in Figure 12, the elasticity of auto travel with respect to transit capacity can be expected to increase

with the degree of existing transit usage.
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Figure 12: Elasticity of auto travel with respect to transit capacity vs. transit use

5.3 Robustness

To assess the robustness of the preceding results, several sensitivity analyses were carried out. Very

similar results to those in Tables 1 and 2 were obtained using alternative measures of congestion,

different combinations of lagged values for the instrument, year fixed effects in place of the quadratic

time trend, and a log-linear specification instead of a linear specification.21

There are other possible measures of congestion which yield qualitatively similar results in our anal-

ysis, due to the high correlation between the various measures (see Table A.3 in the Appendix).

Results using these alternative measures of congestion – including the volume-to-capacity ratio

combining travel on freeway and arterial roads; the Travel Time Index; the Roadway Conges-

tion Index; the percentage of peak vehicle-miles traveled in congested conditions; and the annual

hours of delay per capita – are summarized in Table A.14 for the substitution effect and in Table

A.15 for the equilibrium effect. Point estimates of the average elasticity for the substitution effect

vary between -0.03 and -0.10 across the various specifications, while the point estimates for the

21
As our results above show that the elasticity varies with congestion, we choose not to estimate a log-log regression
model, which assumes that the elasticity does not vary with congestion.
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average elasticity of the equilibrium effect vary between -0.003 and -0.05 across these specifcia-

tions. We are not overly concerned with congestion measurement error, since in a linear regression

model, measurement errors in the dependent variable inflate the standard errors of the regression

parameters but do not lead to inconsistency of the estimator (Cameron and Trivedi, 2005, pp. 913).

Additionally, if we instrument for both transit capacity and auto capacity using different combina-

tions of lagged values for the instrument, our elasticity estimates of the elasticity of auto travel with

respect to transit capacity do not change qualitatively, though the estimates are less precise due to

our instruments being weak estimators of auto capacity. We also try instrumenting for auto price

and transit price using lagged auto price and lagged transit price, in addition to instrumenting for

transit capacity, and our results are again robust. Finally, we also use various weights for the dif-

ferent heterogeneity characteristics outlined above; our results are robust to the various weighting

schemes employed.

6 Conclusion

Traffic congestion has increased significantly in the U.S. over the last 30 years. For 96 of the largest

urban areas, traffic volumes in 1982 caused an average trip to take 10% longer than it would in

uncongested conditions; by 2011, this congestion delay penalty increased to 23%. The issue of

congestion is attracting heightened awareness and a greater sense of urgency for policymakers as

we strive for an economically and environmentally sustainable transportation sector. This paper

empirically examines the effect of past public transit investment on the demand for automobile

transportation.

Our empirical results show that, after controlling for the underlying factors that generate auto

traffic growth, increases in public transit supply lead to a small overall reduction in auto traffic

congestion. In the short run, when accounting for the substitution effect only, we find that on

average a 10% increase in transit capacity leads to a 0.8% reduction in auto travel in the short

run across the 96 UZAs. However, in the longer run, when accounting for both the substitution

effect and the induced demand effect, we find that on average a 10% increase in transit capacity is

expected to lead to a 0.3% reduction in auto travel across the 96 UZAs. For both the substitution

effect and the equilibrium effect, public transit supply does not reduce auto travel when traffic

congestion is below a threshold level.

Additionally, we find that there is substantial heterogeneity across urban areas. When accounting

for the substitution effect only, the magnitude of the elasticity of auto travel with respect to transit

capacity varies from -0.02 in smaller, less densely populated regions with less-developed public tran-
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sit networks; to -0.26 in the largest, most densely populated regions with extensive public transit

networks. When accounting for both the substitution effect and the induced demand effect, the

elasticity of auto travel with respect to transit capacity varies from -0.01 in smaller, less densely

populated regions with less-developed public transit networks; to -0.09 in the largest, most densely

populated regions with extensive public transit networks.

Transit supply tends to occur predominantly in the most heavily congested regions, largely due to

the fact that these congested regions tend to be the largest and thus most suitable to support pub-

lic transit operations. This underlying relationship underscores the importance of addressing the

endogeneity of transit investment when evaluating the effects of transit supply on congestion. The

correlation between transit operations and congested roads may yield the perception that transit

is ineffective in reducing congestion; however, our results indicate that congestion would be even

higher if transit supply decreased.

While the elasticity of auto travel with respect to transit capacity appears to be relatively low on

average, there are circumstances where it can be expected to have a fairly significant impact. Fur-

ther, the magnitude of the existing congestion cost lends some credence to the idea that investment

in public transit can potentially provide a meaningful benefit in the auto market. As an admittedly

rough estimate, if a 10% increase in transit capacity leads to a 0.8% reduction in congestion on

average, this implies an annual congestion cost savings of 0.008×$120 billion ≈ $1 billion based on

the estimated congestion cost in 2011 noted at the outset of the paper; even incremental improve-

ments to travel conditions can provide tremendous aggregate social value.

The Federal Highway Administration (2012) suggests that the elasticity of auto travel with respect

to transit fares ranges from 0.03 to 0.1 in the short run, and our estimate is in line with this

value. While there is a general belief that commuters are more responsive to changes in the time

components of transit travel, there does not appear to be a widely used estimate of the elasticity of

auto travel with respect to transit capacity. McFadden (1974) uses a disaggregate discrete choice

approach and estimates that the elasticity of auto travel with respect to waiting and travel time for

bus and rail ranges from 0.02 to 0.15; again, our estimate is of a commensurate order of magnitude.

Our results highlighting the importance of accounting for regional heterogeneity when evaluating

the impacts of transit on congestion help reconcile the apparent mixed evidence of the existing

empirical studies discussed in Section 2. While it is not possible to directly compare results across

studies due to differences in the types of analysis undertaken, the data used, and how variables are

measured, there are some unifying results.

Winston and Langer (2006) report that the type of transit service has a differential effect on con-
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gestion; our results are consistent with this conclusion, though we are not able to ascertain whether

this is directly due to the transit technology, or whether rail happens to be located in the largest

and most dense regions where public transit is best positioned to reduce congestion. Winston

and Maheshri (2007) discuss the importance of the transit network configuration in regards to the

efficiency of its operations, and our results comparing the effects of transit investment with and

without taking regional fixed effects into account (such as transit and road network configuration)

suggest a similar interpretation.

Anderson (2014) emphasizes the importance of accounting for intra-city heterogeneity across com-

muters when estimating the effect of transit supply on congestion, whereas our results focus on the

importance of inter -city heterogeneity. Though both studies find that transit can have a significant

effect on congestion in at least certain cases, the different empirical approaches taken in the two

studies yield fundamentally different interpretations of this estimated effect.

Overall, our results are broadly consistent with those of Duranton and Turner (2011) and sug-

gest that induced demand is a significant factor. If we only include mixed traffic transit modes

and exclude rail service, then transit has a negligible effect on congestion in our model as well.22

However, we do find that transit can reduce auto congestion for certain transportation networks,

so it is possible that their finding that transit has no effect on auto ridership may be obfuscating

underlying heterogeneity across regions.

Interpreting the preceding results, there are two factors that suggest that public transit could have

a more beneficial impact on road congestion in the future. First, the estimated effects have been

generated via the existing public transit networks, which Winston and Maheshri (2007, pp. 366; pp.

378) emphasize are not presently optimally configured and should not be assumed to be in long-run

equilibrium, due to regulatory, political and physical constraints. Second, these results are also in

the context of inadequate road pricing. Small (2005) discusses the potential complementarity of

road pricing and public transit provision; the ability of public transit to reduce congestion could be

greatly enhanced if individuals were required to pay the full marginal social cost of auto travel, which

would increase the substitution effect. Additionally, auto travel is averaged over the entire day in

our data; in practice, transit capacity varies according to peak/off-peak travel periods. With more

detailed data disaggregated over time, it would be possible to generate peak and off-peak elasticities

of auto travel with respect to transit capacity, which would further aid transit investment decisions.

While our results suggest that fixed guideway transit investments in dense regions yield higher

congestion-reduction benefits than do mixed transit modes, this should not be construed as advo-

22
Their study includes counts of large buses in peak service as the measure of transit capacity, whereas we include
all types of transit and a more accurate measure of transit supply in the form of vehicle-miles supplied.
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cating for fixed guideway modes over mixed transit modes per se. In the analysis, we have only

considered the benefits in the auto market due to transit investment, and have not considered the

costs of the various transit modes. Both construction and operating costs of transit vary widely by

region and type of transit.23 Further, proponents of public transit may argue that investment in

public transit today is necessary to develop transit ridership in the future and to influence land-use

patterns in order to sow the roots for a more efficient public transit system in the future. Overall,

the magnitude of this benefit is subject to considerable variability, and is dependent upon the char-

acteristics of the existing transportation network, the technology of the proposed transit system,

and the socioeconomic and geographic attributes of the region. The implication is that transit

cost-benefit analyses must be carried out on a case-by-case basis and there may be limited scope

for the external validity of regional studies, as past experiences in one city may not generalize to

potential new transit investments in another.

The results of this paper are consistent with Parry’s (2009, pp. 462) summary of research in this

area: “Expanding transit and subsidizing fares has limited impacts on automobile congestion, given

relatively modest own-price elasticities for transit... Nonetheless, urban transit fares are heavily

subsidized... Improving service quality (e.g. increasing transit speed, reducing wait times at stops,

and improving transit access) may be more effective in deterring automobile use.” This paper

contributes to the literature by separately estimating the substitition and induced demand effects

following public transit investment; by accounting for regional heterogeneity in the effect of transit

supply on auto use; by using a wider and longer time series of data; and by being cognizant of

the potential endogeneity inherent in evaluating the effect of past investments in transit on traffic

congestion. While there is modest evidence that public transit may be able to reduce congestion

levels, the results also reaffirm the theoretical and empirical argument that traffic congestion can

only be fully addressed by devising economically and politically accepted approaches to efficiently

pricing auto travel across the U.S.
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Appendix - Supplementary Tables

Table A.1: Summary statistics

Obs Mean Std. Dev. Min Max Source
Traffic Congestion
Travel time index 2,016 1.18 0.08 1.02 1.43 UMR
Total annual hours of delay 2,016 41,954 78,991 289 632,212 UMR
Roadway congestion index 2,016 0.97 0.19 0.50 1.58 UMR
% of peak vehicle-miles traveled under congested conditions 2,016 40.7 20.2 5 96 UMR
Annual delay hours per capita 2,016 21.1 8.9 1.8 58.1 UMR
Daily auto vehicle-mile traveled per lane-mile (000s) 2,016 7.1 1.5 3.0 11.5 UMR
Auto Network
Freeway lane-miles 2,016 909 1,048 30 7,600 UMR
Arterial street lane-miles 2,016 2,618 3,200 190 20,900 UMR
Freeway auto vehicle-miles traveled (daily, 000s) 2,016 13,714 19,304 205 139,275 UMR
Arterial streets auto vehicle-miles traveled (daily, 000s) 2,016 13,461 17,545 600 126,010 UMR
Fuel price per vehicle-mile traveled (2011 dollars) 2,016 0.107 0.023 0.060 0.241 UMR, FHWA
Transit Funding
Transit fare per passenger-mile traveled (2011 dollars) 1,997 0.215 0.093 0.009 2.121 NTD
Annual total Federal funding 2,002 73,136,182 216,742,246 0 2,999,359,744 NTD
Federal funding per capita 2,002 27,902 27,734 0 245,834 NTD
% of capital funds from Federal sources 1,977 0.666 0.228 0 1 NTD
% of operating funds from Federal sources 2,002 0.135 0.106 0 0.662 NTD
Transit Network Size: Directional Route-Miles
Commuter rail 2,002 69.9 282.6 0 2,368 NTD
Light rail 2,002 10.1 24.3 0 152 NTD
Heavy rail 2,002 26.2 116.8 0 958 NTD
Hybrid rail 2,002 0.04 1.56 0 70 NTD
Monorail and automated guideway 2,002 0.18 1.01 0 9 NTD
Bus rapid transit 2,002 0.04 1.15 0 42 NTD
Bus 2,002 1,666 2,237 82 20,520 NTD
Trolleybus 2,002 4.7 23.3 0 173 NTD
Fixed guideway 2,002 106 327 0 2,956 NTD
Mixed traffic 2,002 1,670 2,331 82 20,520 NTD
All transit 2,002 1,777 2,632 82 23,371 NTD
Transit Capacity: Annual Vehicle Revenue-Miles
Commuter rail 2,002 2,677,667 16,637,135 0 186,000,000 NTD
Light rail 1,997 594,859 1,556,640 0 10,154,573 NTD
Heavy rail 2,002 6,113,300 35,689,201 0 367,000,000 NTD
Hybrid rail 2,002 609 27,254 0 1,219,426 NTD
Monorail and automated guideway 2,002 17,811 106,417 0 1,120,647 NTD
Bus rapid transit 2,002 818 22,039 0 874,385 NTD
Bus 2,002 16,294,348 32,901,483 118,378 289,000,000 NTD
Trolleybus 2,002 138,270 832,751 0 7,915,843 NTD
Fixed guideway 1,997 9,427,123 52,303,899 0 554,976,384 NTD
Mixed traffic 2,001 16,410,332 33,028,658 118,378 289,000,000 NTD
All transit 1,996 25,847,205 82,595,975 118,378 843,976,384 NTD
Transit Ridership: Annual Passenger-Miles Traveled
Commuter rail 2,002 97,201,568 604,396,641 0 6,690,000,000 NTD
Light rail 1,997 14,758,379 41,874,325 0 338,000,000 NTD
Heavy rail 2,002 141,634,084 874,646,063 0 10,700,000,000 NTD
Hybrid rail 2,002 20,263 906,638 0 40,566,372 NTD
Monorail and automated guideway 2,002 115,772 760,162 0 10,039,936 NTD
Bus rapid transit 2,002 11,020 314,982 0 12,238,706 NTD
Bus 2,002 184,657,374 485,064,038 230,832 4,790,000,000 NTD
Trolleybus 2,002 1,979,391 13,120,112 0 134,000,000 NTD
Fixed guideway modes 1,997 254,339,441 1,474,259,227 0 17,487,702,016 NTD
Mixed traffic modes 2,002 186,636,765 486,890,379 230,832 4,790,000,128 NTD
All transit modes 1,997 440,954,265 1,921,938,252 230,832 22,099,701,760 NTD
Avg trip length (passenger-miles per trip), fixed guideway 622 7.8 10.1 0 182.3 NTD
Avg trip length (passenger-miles per trip), mixed traffic 2,002 4.2 1.5 1.0 18.8 NTD
Avg trip length (passenger-miles per trip), all transit 1,997 4.5 1.7 1.0 19.5 NTD
Geographic and Socioeconomic
Population (000s) 2,016 1,568 2,386 120 18,946 UMR
Area (square-miles) 2,016 501 522 43 3,353 NTD
Population density (000s per square-mile) 2,016 2.9 1.3 0.8 9.3 UMR, NTD
Proportion of population employed 2,016 0.58 0.07 0.33 0.80 BEA
Per capita income (2011 dollars, 000s) 2,016 38.6 7.6 16.1 71.5 BEA

Sources (see Section 4 for details):

BEA - Bureau of Economic Analysis; FHWA - Federal Highway Administration; NTD - National Transit Database; UMR - Texas Transportation

Institute’s Urban Mobility Report
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Table A.2: Overview of regions included in the analysis

Urbanized Area Population Travel Time Index Delay Hrs Freeways (Auto) Transit Mode Split Rail

000s %∆ per sq mi 1991 2011 (per cap) %∆lane-mi %∆VMT %∆DRM %∆VRM %∆PMT (VMT/PMT) (Y = 1)

Akron, OH 619 19.0% 2,010 1.10 1.12 15.8 17.3% 38.4% 31.7% 11.0% 11.6% 116.7 No
Albany, NY 616 25.7% 2,169 1.08 1.16 21.3 41.1% 68.4% 58.5% 11.4% -26.8% 70.7 No
Albuquerque, NM 630 21.2% 2,813 1.11 1.10 19.8 70.9% 120.5% 0.5% 75.2% 115.4% 34.1 Yes
Allentown, PA-NJ 635 22.1% 2,190 1.12 1.17 20.9 65.9% 105.5% -3.5% 49.6% 8.2% 167.4 No
Anchorage, AK 307 30.6% 3,886 1.18 1.18 11.8 15.2% 28.4% -35.8% 8.5% 37.8% 39.3 Yes
Atlanta, GA 4,360 50.3% 2,221 1.14 1.24 32.6 52.7% 90.6% 7.1% 16.8% 32.0% 28.5 Yes
Austin, TX 1,345 94.9% 4,230 1.17 1.32 28.5 102.8% 117.0% 60.7% 50.7% 50.6% 43.5 Yes
Bakersfield, CA 544 72.7% 4,945 1.03 1.11 8.7 20.6% 42.0% 41.0% 65.2% 23.3% 76.4 No
Baltimore, MD 2,523 24.9% 3,694 1.14 1.23 27.8 24.9% 67.1% -9.6% 36.7% 45.9% 16.5 Yes
Baton Rouge, LA 610 64.9% 2,171 1.11 1.22 28.1 61.7% 105.4% 7.8% 2.2% 9.8% 217.7 No
Beaumont, TX 243 15.7% 3,000 1.04 1.10 17.3 27.0% 67.7% 14.6% 40.6% -51.0% 775.4 No
Birmingham, AL 861 35.6% 2,196 1.08 1.19 24.3 30.6% 67.0% 62.9% -19.1% -47.9% 342.2 No
Boise, ID 319 87.6% 2,927 1.04 1.06 11.4 137.1% 131.0% -10.3% 111.1% 181.5% 147.5 No
Boston, MA-NH-RI 4,320 19.3% 2,488 1.27 1.28 31.7 44.8% 44.4% 29.9% 19.6% 54.1% 10.6 Yes
Bridgeport, CT-NY 938 31.2% 2,017 1.13 1.27 28.3 31.9% 52.1% 65.6% 53.3% 42.9% 126.0 No
Brownsville, TX 214 78.3% 3,754 1.13 1.18 17.3 170.0% 266.1% 72.3% 32.3% -32.9% 62.1 No
Buffalo, NY 1,048 -1.6% 2,856 1.10 1.17 20.6 24.4% 31.6% -24.3% 4.3% 4.8% 46.1 Yes
Cape Coral, FL 473 93.1% 2,464 1.13 1.15 21.1 285.0% 507.8% 12.0% 129.4% 104.4% 109.8 No
Charleston, SC 535 33.8% 2,316 1.13 1.15 20.3 44.9% 92.5% 90.0% 79.8% 21.0% 155.5 No
Charlotte, NC-SC 1,070 91.1% 2,460 1.14 1.20 27.1 344.5% 357.0% 40.9% 181.6% 207.7% 48.0 Yes
Chicago, IL-IN 8,605 14.5% 4,053 1.17 1.25 31.6 52.2% 66.6% 23.6% 1.9% 17.1% 7.3 Yes
Cincinnati, OH-KY-IN 1,717 43.1% 2,555 1.14 1.20 24.9 52.6% 70.5% 3.8% -2.8% -21.6% 73.3 No
Cleveland, OH 1,700 -3.4% 2,628 1.14 1.16 20.6 33.9% 35.0% 7.5% -38.6% -27.9% 39.5 Yes
Colorado Springs, CO 557 68.8% 2,827 1.04 1.13 17.8 77.0% 157.6% 65.9% 20.5% 9.7% 145.9 No
Columbia, SC 490 46.3% 1,822 1.05 1.11 20.6 57.1% 122.8% 23.9% -20.4% -16.4% 335.1 No
Columbus, OH 1,289 40.1% 3,239 1.08 1.18 27.7 42.5% 79.0% 22.5% 20.2% -19.3% 100.5 No
Corpus Christi, TX 337 18.2% 3,064 1.02 1.04 9.4 33.3% 40.1% -10.5% 3.6% 28.3% 62.6 No
Dallas, TX 5,260 59.9% 3,738 1.13 1.26 31.9 39.6% 72.9% -16.9% 24.6% 32.8% 65.6 Yes
Dayton, OH 745 24.2% 2,299 1.13 1.11 16.7 62.1% 74.4% -15.3% -18.4% -35.1% 93.2 No
Denver-Aurora, CO 2,348 48.6% 4,705 1.14 1.27 32.4 65.3% 94.4% 91.2% 86.3% 143.5% 20.3 Yes
Detroit, MI 3,869 -2.9% 3,066 1.19 1.18 27.5 22.5% 19.6% -11.4% -12.2% -45.5% 91.8 No
El Paso, TX-NM 739 32.0% 3,374 1.09 1.21 21.6 102.4% 100.8% 43.9% 63.7% 4.0% 40.5 No
Eugene, OR 256 31.3% 3,765 1.08 1.08 8.9 49.1% 94.8% 25.2% 4.2% 63.0% 22.1 No
Fresno, CA 686 44.4% 4,935 1.07 1.08 10.8 82.6% 137.4% 28.7% 31.8% 26.6% 73.6 No
Grand Rapids, MI 612 37.5% 2,381 1.05 1.09 16.4 81.7% 100.9% 97.6% 113.8% 144.8% 94.5 No
Greensboro, NC 351 59.5% 2,600 1.03 1.10 18.9 71.6% 122.5% 612.1% 326.0% 621.1% 67.0 No
Hartford, CT 905 9.0% 1,930 1.11 1.18 25.4 29.3% 52.3% 19.2% 27.7% -5.8% 68.5 Yes
Honolulu, HI 719 7.3% 4,669 1.30 1.36 29.0 28.2% 16.8% 12.0% 20.0% 19.9% 6.1 No
Houston, TX 4,129 41.2% 3,188 1.19 1.26 35.3 59.2% 73.1% 77.6% 29.2% -0.6% 54.7 Yes
Indianapolis, IN 1,234 29.9% 2,231 1.10 1.17 28.5 56.8% 75.4% -11.6% 12.1% -25.6% 202.1 No
Jackson, MS 426 25.3% 2,646 1.05 1.10 17.7 31.9% 64.5% -7.9% -2.2% -38.4% 1469.2 No
Jacksonville, FL 1,083 44.4% 2,635 1.18 1.14 20.9 102.8% 123.5% -12.7% 53.4% 52.8% 80.4 No
Kansas City, MO-KS 1,585 36.6% 2,714 1.09 1.13 18.6 37.9% 73.3% 37.5% 10.8% -2.4% 130.7 No
Knoxville, TN 508 58.8% 1,499 1.21 1.16 26.1 49.2% 72.6% -16.0% 48.6% 14.1% 325.1 No
Laredo, TX 235 88.0% 5,465 1.06 1.14 13.1 156.7% 185.9% 125.7% 110.0% 20.7% 65.0 No
Las Vegas, NV 1,443 92.4% 5,045 1.15 1.20 31.5 212.5% 241.8% 27.7% 121.6% 477.7% 35.8 No
Little Rock, AR 464 49.7% 2,252 1.02 1.07 17.5 74.5% 103.5% 1.0% 40.9% 42.1% 227.5 Yes
Los Angeles, CA 13,229 12.5% 7,931 1.40 1.37 37.9 22.7% 25.0% 25.1% 34.8% 40.8% 21.3 Yes
Louisville, KY-IN 1,084 33.8% 2,772 1.13 1.18 24.2 46.4% 86.7% 22.3% -18.0% -32.2% 103.9 No
Madison, WI 403 30.0% 3,535 1.05 1.11 13.3 65.1% 59.0% 34.3% 30.7% 50.5% 31.2 No
McAllen, TX 578 122.3% 1,841 1.02 1.16 19.8 96.4% 159.5% 12.8% 389.0% 50.5% 1982.4 No
Memphis, TN-MS-AR 1,058 22.3% 2,645 1.16 1.18 27.1 58.8% 80.8% 18.3% 1.9% -19.6% 109.6 No
Miami, FL 5,482 38.3% 4,912 1.19 1.25 31.9 35.2% 91.6% 77.1% 55.7% 79.6% 26.9 Yes
Milwaukee, WI 1,496 22.1% 3,072 1.11 1.15 18.6 46.6% 47.3% 5.4% -5.2% -8.2% 46.9 No
Minneapolis-St. Paul, MN 2,757 34.2% 3,084 1.12 1.21 22.0 37.4% 63.3% 51.1% 51.8% 74.2% 31.9 Yes
Nashville, TN 1,145 99.1% 2,657 1.15 1.23 31.2 82.5% 126.9% 35.4% 35.7% 73.4% 134.1 Yes
New Haven, CT 616 35.4% 2,161 1.10 1.17 23.6 57.1% 83.4% -23.8% 21.3% -8.6% 116.2 No
New Orleans, LA 1,065 0.5% 5,379 1.22 1.20 18.0 -2.6% -2.8% -4.8% -53.1% -59.6% 42.6 No
New York, NY-NJ-CT 18,946 18.6% 5,650 1.22 1.33 28.7 24.6% 44.0% 20.2% 18.3% 50.5% 2.7 Yes
Oklahoma City, OK 983 39.4% 3,053 1.04 1.15 25.6 32.0% 49.4% 22.3% 4.5% 30.4% 370.2 No
Omaha, NE-IA 646 20.7% 2,858 1.06 1.11 16.6 88.1% 144.3% -2.8% -0.1% -28.7% 190.9 No

Continued on next page
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Table A.2 – continued from previous page
Urbanized Area Population Travel Time Index Delay Hrs Freeways (Auto) Transit Mode Split Rail

000s %∆ per sq mi 1991 2011 (per cap) %∆lane-mi %∆VMT %∆DRM %∆VRM %∆PMT (VMT/PMT) (Y = 1)

Orlando, FL 1,475 62.1% 3,256 1.21 1.20 31.6 99.2% 130.2% 142.9% 204.6% 275.5% 56.2 No
Oxnard, CA 428 43.4% 5,632 1.02 1.10 17.5 12.0% 34.9% 79.1% 162.0% 143.0% 137.2 No
Pensacola, FL-AL 361 36.2% 1,648 1.07 1.11 15.7 96.8% 84.3% 106.6% 60.7% 31.9% 240.1 No
Philadelphia, PA-NJ-MD 5,381 17.2% 2,989 1.16 1.26 29.0 45.8% 55.1% 40.1% 28.8% 26.3% 11.5 Yes
Phoenix-Mesa, AZ 3,679 90.6% 4,605 1.09 1.18 22.4 162.3% 229.0% 116.7% 174.9% 101.9% 56.5 Yes
Pittsburgh, PA 1,761 -0.8% 2,067 1.29 1.24 26.5 26.2% 32.9% -0.5% -18.1% -37.3% 29.0 Yes
Portland, OR-WA 1,925 57.8% 4,061 1.14 1.28 27.0 53.5% 67.6% 3.6% 41.2% 103.9% 15.9 Yes
Poughkeepsie, NY 550 59.4% 2,075 1.12 1.12 17.8 75.9% 56.2% 90.7% 56.7% 231.1% 92.2 No
Providence, RI-MA 1,236 12.4% 2,452 1.09 1.16 19.9 39.7% 62.7% 140.2% 39.7% 20.7% 67.0 No
Raleigh-Durham, NC 1,142 119.6% 3,569 1.08 1.14 15.7 150.0% 176.9% 10.5% 131.0% 80.2% 244.7 No
Richmond, VA 974 42.2% 2,229 1.09 1.11 20.0 81.5% 76.8% 29.6% 1.1% -27.4% 165.1 No
Riverside, CA 2,025 50.0% 4,613 1.13 1.23 25.3 35.9% 65.7% 36.2% 109.9% 78.6% 77.4 No
Rochester, NY 749 21.8% 2,539 1.13 1.13 19.8 27.7% 40.7% 51.5% -25.1% 25.2% 59.2 No
Sacramento, CA 1,895 62.7% 5,136 1.16 1.20 20.7 24.6% 61.4% 94.7% 59.6% 51.6% 48.5 Yes
Salem, OR 246 44.7% 3,565 1.11 1.14 18.7 68.9% 73.9% -18.9% 32.0% 55.1% 70.0 No
Salt Lake City, UT 1,027 27.6% 4,446 1.14 1.14 21.3 28.8% 48.5% 72.8% 47.7% 107.6% 18.5 Yes
San Antonio, TX 1,558 32.0% 3,819 1.06 1.19 25.7 31.4% 97.1% 49.6% 14.6% 13.4% 45.4 No
San Diego, CA 3,121 27.6% 3,991 1.12 1.18 23.2 22.8% 37.2% 4.9% 12.3% 22.8% 32.2 Yes
San Francisco, CA 4,101 10.1% 7,782 1.23 1.22 37.8 15.7% 27.7% 12.1% 27.5% 23.5% 8.5 Yes
San Jose, CA 1,838 22.5% 7,069 1.23 1.24 25.8 -5.7% 3.8% -3.6% -16.6% -1.8% 43.2 Yes
Sarasota, FL 688 51.2% 2,548 1.11 1.12 15.3 260.0% 619.1% 93.4% 168.6% 205.1% 103.0 No
Seattle, WA 3,286 39.8% 3,444 1.27 1.26 30.7 52.9% 44.3% -9.4% 73.1% 82.3% 16.5 Yes
Spokane, WA-ID 383 29.8% 2,678 1.12 1.12 15.9 104.0% 138.1% -6.8% 15.0% 27.7% 40.1 No
Springfield, MA-CT 628 9.2% 2,032 1.11 1.13 19.2 36.3% 68.6% 26.4% 5.6% -4.7% 92.8 No
St. Louis, MO-IL 2,343 19.2% 2,826 1.14 1.14 21.2 74.1% 72.6% 12.5% 50.7% 56.8% 44.8 Yes
Stockton, CA 409 43.5% 5,527 1.10 1.10 8.6 37.5% 99.5% 233.8% 112.4% 292.5% 29.5 Yes
Tampa, FL 2,393 38.7% 2,984 1.22 1.20 26.3 139.1% 145.5% -30.7% 54.8% 55.7% 73.2 Yes
Toledo, OH-MI 516 5.3% 2,554 1.05 1.13 17.8 21.9% 44.9% -53.3% -42.0% -54.3% 162.3 No
Tucson, AZ 718 30.5% 2,467 1.13 1.16 26.6 145.7% 203.4% 141.2% 36.5% 15.1% 54.0 No
Tulsa, OK 717 12.9% 2,747 1.06 1.12 21.6 96.0% 72.3% 52.4% -4.1% -21.8% 295.9 No
Virginia Beach, VA 1,555 14.8% 2,951 1.18 1.20 29.7 27.6% 51.5% 38.2% 45.7% 76.6% 81.4 No
Washington, DC-VA-MD 4,613 41.9% 3,987 1.25 1.32 38.9 27.0% 54.2% 172.0% 67.4% 50.5% 9.4 Yes
Wichita, KS 510 39.7% 2,849 1.06 1.09 13.5 83.2% 134.9% -20.5% -20.1% 1.7% 226.0 No
Winston-Salem, NC 388 68.7% 1,546 1.04 1.11 13.9 64.3% 70.6% -11.4% 14.6% -20.6% 258.6 No
Worcester, MA-CT 447 17.6% 1,788 1.11 1.13 22.7 45.6% 47.4% -19.9% -27.7% -17.0% 264.7 No

Mean 1,761 39.4% 3,272 1.12 1.17 22.48 66.4% 96.5% 0.39 0.45 48.3% 136.6 0.354
Median 956 34.8% 2,857 1.12 1.17 21.29 50.7% 72.8% 0.23 0.30 25.8% 69.2 0
Min 214 -3.4% 1,499 1.02 1.04 8.60 -5.7% -2.8% -0.53 -0.53 -59.6% 2.7 0
Max 18,946 122.3% 7,931 1.40 1.37 38.88 344.5% 619.1% 6.12 3.89 621.1% 1982.4 1

Abbreviations: VMT - vehicle-miles traveled; DRM - directional route-miles; VRM - vehicle revenue-miles; PMT - passenger-miles traveled

Note: Throughout the table, values for each urban area are measured in 2011 (unless specified otherwise) and growth rates reflect the cumulative growth of 2011 values relative to 1991 values.

Table A.3: Correlation between various measures of congestion

Travel Roadway % peak VMT Annual V/C
Time Congestion in congested delay hours ratio
Index Index conditions per capita (freeways)

Travel Time Index 1.000 - - - -

Roadway Congestion Index 0.620 1.000 - - -

% peak VMT in congested conditions 0.677 0.911 1.000 - -

Annual delay hours per capita 0.792 0.677 0.720 1.000 -

Volume-to-capacity (V/C) ratio, freeways 0.601 0.933 0.858 0.653 1.000

obs = 2016
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Table A.4: Average congestion levels by Urbanized Area, 1991-2011

UZA Roadway Congestion Annual Delay Hours UZA Roadway Congestion Annual Delay Hours
Index per Capita Index per Capita

Los Angeles, CA 1.543 43.7 Nashville, TN 0.950 31.1
San Francisco, CA 1.354 44.4 St. Louis, MO-IL 0.946 24.2
Riverside, CA 1.317 20.3 Milwaukee, WI 0.936 19.1
San Diego, CA 1.301 21.3 New Orleans, LA 0.927 15.1
San Jose, CA 1.282 33.1 Allentown, PA-NJ 0.920 20.8
Washington, DC-VA-MD 1.270 39.3 New Haven, CT 0.912 23.9
Miami, FL 1.260 27.8 Birmingham, AL 0.907 22.0
Atlanta, GA 1.248 32.8 Memphis, TN-MS-AR 0.900 25.7
Sacramento, CA 1.227 22.6 Fresno, CA 0.897 11.7
Oxnard, CA 1.213 14.5 Boise, ID 0.895 10.6
Tampa, FL 1.192 23.1 Cleveland, OH 0.889 18.0
Phoenix-Mesa, AZ 1.168 20.0 Dayton, OH 0.877 19.3
Detroit, MI 1.163 29.7 Hartford, CT 0.872 22.1
Las Vegas, NV 1.162 27.8 Omaha, NE-IA 0.868 12.2
Chicago, IL-IN 1.140 25.9 Poughkeepsie, NY 0.863 14.8
Portland, OR-WA 1.134 26.1 Salem, OR 0.858 22.2
Seattle, WA 1.134 33.2 El Paso, TX-NM 0.852 18.6
Houston, TX 1.123 26.3 Columbia, SC 0.846 14.5
Indianapolis, IN 1.113 31.7 Eugene, OR 0.844 10.7
Cape Coral, FL 1.112 21.3 Oklahoma City, OK 0.844 21.5
Orlando, FL 1.112 32.9 Grand Rapids, MI 0.842 14.1
Baltimore, MD 1.105 23.7 Madison, WI 0.838 7.8
Dallas, TX 1.091 25.8 Providence, RI-MA 0.838 18.7
Denver-Aurora, CO 1.090 27.3 Akron, OH 0.831 19.5
Sarasota, FL 1.087 15.1 Little Rock, AR 0.820 12.6
Minneapolis-St. Paul, MN 1.080 20.6 Toledo, OH-MI 0.818 20.0
Boston, MA-NH-RI 1.073 30.6 Jackson, MS 0.814 13.7
Bridgeport, CT-NY 1.073 29.4 Worcester, MA-CT 0.810 24.8
Charleston, SC 1.056 19.0 Winston-Salem, NC 0.806 11.6
Louisville, KY-IN 1.055 23.3 Richmond, VA 0.803 15.4
Knoxville, TN 1.051 27.9 Kansas City, MO-KS 0.792 21.7
Honolulu, HI 1.051 25.1 McAllen, TX 0.789 13.6
New York, NY-NJ-CT 1.049 24.0 Tulsa, OK 0.780 16.4
Tucson, AZ 1.044 22.0 Springfield, MA-CT 0.779 17.4
Baton Rouge, LA 1.030 22.2 Colorado Springs, CO 0.776 18.5
Stockton, CA 1.030 7.3 Bakersfield, CA 0.766 4.5
Jacksonville, FL 1.027 23.1 Brownsville, TX 0.759 8.8
Columbus, OH 1.027 23.8 Pittsburgh, PA 0.757 26.5
Salt Lake City, UT 1.020 19.4 Beaumont, TX 0.757 12.8
Philadelphia, PA-NJ-MD 1.019 24.4 Spokane, WA-ID 0.728 19.5
Charlotte, NC-SC 1.012 19.8 Albany, NY 0.727 17.1
Cincinnati, OH-KY-IN 1.008 30.4 Anchorage, AK 0.725 17.5
San Antonio, TX 0.997 19.5 Rochester, NY 0.725 17.6
Austin, TX 0.989 26.1 Corpus Christi, TX 0.686 8.2
Pensacola, FL-AL 0.987 13.6 Laredo, TX 0.686 7.6
Albuquerque, NM 0.982 22.4 Buffalo, NY 0.666 18.0
Virginia Beach, VA 0.964 30.1 Greensboro, NC 0.655 19.8
Raleigh-Durham, NC 0.951 15.0 Wichita, KS 0.554 12.8

Mean 0.965 21.1
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Table A.5: First-stage regression results: transit capacity (Substitution Effect)

Dependent variable is Transit Capacity in total vehicle revenue-miles (millions)

Coefficient (Std. Err)

Instrument

Federal Capital Funding, Two Years Prior (2011$) 2.68e-08∗∗∗ (7.22e-09)

Controls

Auto capacity: freeways (total lane-miles) -0.008 (0.006)

Auto capacity: arterials (total lane-miles) 0.002 (0.004)

Fuel price ($ per vehicle-mile) -3.105 (6.237)

Transit fare ($ per unlinked trip) -0.429 (0.270)

Employment rate (total employed per capita) 9.426 (18.366)

Income (real per capita income) 0.270 (0.204)

Population (millions) 27.562∗ (10.844)

Year -28.814 (29.274)

Year2 0.007 (0.007)

UZA fixed effects Yes

N 1802

R2 0.666

p-val. (Prob > F) 0.000

First-stage test statistics

First-stage AP F-stat 13.79

Kleibergen-Paap underidentification test: p-val. 0.029

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. 0.035

Anderson-Rubin Wald χ2 test: p-val. 0.031

Notes: Robust standard errors in parentheses; clustered by UZA.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)

40



Table A.6: First-stage regression results: transit capacity (Equilibrium Effect)

Dependent variable is Transit Capacity in total vehicle revenue-miles (millions)

Coefficient (Std. Err)

Instrument

Federal Capital Funding, Two Years Prior (2011$) 2.53e-07∗∗∗ (1.85e-08)

Auto capacity: freeways (total lane-miles) 0.004∗ (0.002)

Auto capacity: arterials (total lane-miles) -0.016∗∗∗ (0.002)

Fuel price ($ per vehicle-mile) -5.793 (20.385)

Transit fare ($ per unlinked trip) 0.022 (0.480)

Employment rate, 1991 (total employed per capita) 31.126∗∗∗ (5.700)

Income, 1991 (real per capita income) -0.708∗∗∗ (0.095)

Population, 1991 (millions) 37.372∗∗∗ (3.102)

Year 0.634∗∗∗ (0.118)

UZA fixed effects No

N 1802

R2 0.960

p-val. (Prob > F) 0.000

First-stage test statistics

First-stage AP F-stat 187.24

Kleibergen-Paap underidentification test: p-val. 0.000

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. 0.000

Anderson-Rubin Wald χ2 test: p-val. 0.000

Notes: Robust standard errors in parentheses; clustered by UZA.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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Table A.7: Congestion versus population size (means)

Population Travel Roadway % peak VMT in Annual VMT per freeway
Quintile Time Congestion congested delay hours lane-mile

Index Index conditions per capita (’000s/day)
Very Low 1.115 0.809 20.07 12.85 10.32
Low 1.137 0.889 30.03 17.99 11.94
Medium 1.173 0.944 40.16 21.39 12.82
High 1.201 1.006 47.54 24.20 13.84
Very High 1.247 1.175 65.26 28.78 16.72

Table A.8: Congestion versus population density (means)

Density Travel Roadway % peak VMT in Annual VMT per freeway
Quintile Time Congestion congested delay hours lane-mile

Index Index conditions per capita (’000s/day)
Very Low 1.137 0.897 29.61 18.45 11.73
Low 1.172 0.913 35.95 21.10 12.17
Medium 1.165 0.914 36.35 20.77 12.50
High 1.178 0.967 42.84 20.93 13.34
Very High 1.222 1.136 58.77 24.13 15.95

Table A.9: Congestion versus rail service (means)

Rail Travel Roadway % peak VMT in Annual VMT per freeway
Service? Time Congestion congested delay hours lane-mile

Index Index conditions per capita (’000s/day)
No 1.150 0.916 34.64 18.89 12.29
Yes 1.239 1.091 56.31 26.84 15.31

Table A.10: Congestion versus % of fixed guideway transit (means)

% of FG Travel Roadway % peak VMT in Annual VMT per freeway
transit Time Congestion congested delay hours lane-mile
service Index Index conditions per capita (’000s/day)

Low 1.159 0.925 35.90 19.64 12.44
High 1.241 1.133 60.66 27.29 16.03

Table A.11: Congestion versus transit accessibility (means)

Transit Travel Roadway % peak VMT in Annual VMT per freeway
Access Time Congestion congested delay hours lane-mile
quintile Index Index conditions per capita (’000s/day)

Very Low 1.137 0.909 32.41 19.26 12.07
Low 1.165 0.942 37.31 21.14 12.57
Medium 1.172 0.939 40.41 20.16 12.89
High 1.190 0.966 42.71 21.53 13.45
Very High 1.213 1.075 51.34 23.64 14.79

Table A.12: Congestion versus transit capacity (means)

Transit Travel Roadway % peak VMT in Annual VMT per freeway
Capacity Time Congestion congested delay hours lane-mile
quintile Index Index conditions per capita (’000s/day)

Very Low 1.124 0.881 28.11 16.89 11.61
Low 1.153 0.927 36.00 20.27 12.46
Medium 1.163 0.931 38.00 19.31 12.60
High 1.197 1.035 48.40 23.16 14.30
Very High 1.240 1.057 53.76 26.23 14.82

Table A.13: Congestion versus transit use (means)

Transit Travel Roadway % peak VMT in Annual VMT per freeway
Usage Time Congestion congested delay hours lane-mile
quintile Index Index conditions per capita (’000s/day)

Very Low 1.121 0.879 27.41 17.96 11.66
Low 1.158 0.953 38.35 21.08 12.70
Medium 1.169 0.945 39.89 20.63 12.79
High 1.184 0.980 43.78 20.61 13.59
Very High 1.245 1.075 54.83 25.58 15.03
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Table A.14: Elasticity (95% confidence interval) for 6 alternative dependent variables: Substitution Effect

(1) (2) (3) (4) (5) (6)

log of V/C ratio: Travel Roadway % peak VMT Annual

V/C ratio freeways & Time Congestion in congested delay hrs

arterials Index Index conditions per capita

Transit capacity -0.028∗∗∗ -0.053∗∗ -0.025∗∗ -0.064∗∗∗ -0.095∗∗∗ -0.018

(total vehicle revenue-miles, millions) (-0.050,-0.007) (-0.088,-0.017) (-0.043,-0.007) (-0.098,-0.030) (-0.158,-0.032) (-0.098,0.063)

Auto capacity: freeways -0.133∗∗∗ 0.020 -0.073∗∗∗ -0.228∗∗∗ -0.427∗∗∗ -0.096

(total lane-miles, thousands) (-0.151,-0.114) (-0.016,0.055) (-0.090,-0.056) (-0.262,-0.194) (-0.513,-0.342) (-0.194,0.002)

Auto capacity: arterials 0.013 -0.359∗∗∗ -0.001 -0.071∗∗∗ -0.097∗∗ 0.042

(total lane-miles, thousands) (-0.005,0.031) (-0.399,-0.319) (-0.017,0.015) (-0.103,-0.040) (-0.171,-0.240) (-0.054,0.139)

Fuel price -0.029∗∗∗ -0.045∗∗∗ -0.021∗∗∗ -0.050∗∗∗ -0.115∗∗∗ -0.221∗∗

($ per vehicle-mile) (-0.036,-0.022) (-0.059,-0.030) (-0.027,-0.014) (-0.064,-0.036) (-0.152,-0.080) (-0.346,-0.095)

Transit fare 0.002 -0.006∗ -0.001 -0.002 0.003 -0.012

($ per unlinked trip) (-0.001,0.005) (-0.012,-0.000) (-0.004,0.002) (-0.007,0.004) (-0.012,0.018) (-0.039,0.016)

Employment rate 0.179∗∗∗ 0.298∗∗∗ 0.061∗ 0.364∗∗∗ -0.047 0.902∗∗

(total employed per capita) (0.129,0.230) (0.191,0.405) (0.012,0.109) (0.264,0.464) (-0.319,0.225) (0.306,1.497)

Income 0.080∗∗∗ 0.216∗∗∗ 0.151∗∗∗ 0.227∗∗∗ 0.503∗∗∗ 0.963∗∗∗

(real per capita income) (0.047,0.114) (0.145,0.287) (0.118,0.183) (0.161,0.294) (0.322,0.684) (0.539,1.386)

Population 0.163∗∗∗ 0.435∗∗∗ 0.154∗∗∗ 0.438∗∗∗ 0.832∗∗∗ 0.275∗

(millions) (0.120,0.207) (0.361,0.509) (0.115,0.192) (0.366,0.511) (0.671,0.993) (0.043,0.507)

Time trend (quadratic) Yes Yes Yes Yes Yes Yes

UZA fixed effects Yes Yes Yes Yes Yes Yes

N 1802 1802 1802 1802 1802 1802

R
2

0.530 0.503 0.464 0.587 0.530 0.505

First-stage test statistics

First-stage AP F-stat, Transit Capacity 13.79 13.79 13.79 13.79 13.79 13.79

Kleibergen-Paap underidentification test: p-val. 0.029 0.029 0.029 0.029 0.029 0.029

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. - - - - 0.040 0.935

Anderson-Rubin Wald χ
2

test: p-val. - - - - 0.036 0.934

Notes: Robust standard errors in parentheses; clustered by UZA. In (1)-(6), transit capacity instrumented by: Federal transit funding

in UZA, lagged two periods.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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Table A.15: Elasticity (95% confidence interval) for 6 alternative dependent variables: Equilibrium Effect

(1) (2) (3) (4) (5) (6)

log of V/C ratio: Travel Roadway % peak VMT Annual

V/C ratio freeways & Time Congestion in congested delay hrs

arterials Index Index conditions per capita

Transit capacity -0.010∗∗∗ -0.047∗∗∗ -0.003∗ -0.026∗∗∗ -0.030∗∗∗ -0.028∗∗∗

(total vehicle revenue-miles, millions) (-0.013,-0.007) (-0.054,-0.040) (-0.006,-0.001) (-0.032,-0.020) (-0.045,-0.015) (-0.040,-0.014)

Auto capacity: freeways 0.014∗∗ 0.193∗∗∗ 0.024∗∗∗ 0.022∗ 0.075∗∗ 0.143∗∗∗

(total lane-miles, thousands) (0.004,0.023) (0.171,0.216) (0.018,0.030) (0.000,0.043) (0.028,0.122) (0.106,0.180)

Auto capacity: arterials 0.029∗∗∗ -0.235∗∗∗ 0.002 0.032 0.129∗∗ 0.084∗∗

(total lane-miles, thousands) (0.014,0.044) (-0.276,-0.195) (-0.010,0.014) (-0.004,0.067) (0.050,0.208) (0.023,0.146)

Fuel price -0.017 -0.001 0.014∗ -0.008 0.018 -0.145∗∗∗

($ per vehicle-mile) (-0.040,0.006) (-0.046,0.043) (0.001,0.028) (-0.052,0.037) (-0.090,0.125) (-0.227,-0.064)

Transit fare -0.005 -0.007 0.002 -0.017 -0.017 0.020

($ per unlinked trip) (-0.014,0.004) (-0.022,0.008) (-0.002,0.007) (-0.036,0.002) (-0.047,0.014) (-0.003,0.042)

Employment rate (1991 value) -0.055∗ 0.019 -0.015 -0.237∗∗∗ -0.028 0.225∗

(total employed per capita) (-0.099,-0.010) (-0.067,0.104) (-0.044,0.014) (-0.329,-0.144) (-0.240,0.185) (0.048,0.402)

Income (1991 value) 0.152∗∗∗ 0.307∗∗∗ 0.064∗∗∗ 0.344∗∗∗ 0.586∗∗∗ 0.598∗∗∗

(real per capita income) (0.120,0.183) (0.249,0.365) (0.044,0.084) (0.283,0.404) (0.427,0.745) (0.472,0.724)

Population (1991 value) 0.007 0.149∗∗∗ 0.006 0.049∗∗ 0.028 -0.038

(millions) (-0.007,0.021) (0.113,0.185) (-0.006,0.018) (0.018,0.080) (-0.047,0.103) (-0.101,0.025)

Time trend (quadratic) Yes Yes Yes Yes Yes Yes

UZA fixed effects No No No No No No

N 1802 1802 1802 1802 1802 1802

R
2

0.353 0.400 0.368 0.351 0.401 0.414

First-stage test statistics

First-stage AP F-stat, Transit Capacity 187.24 187.24 187.24 187.24 187.24 187.24

Kleibergen-Paap underidentification test: p-val. 0.000 0.000 0.000 0.000 0.000 0.000

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. - 0.000 - - 0.000 0.000

Anderson-Rubin Wald χ
2

test: p-val. - 0.000 - - 0.000 0.000

Notes: Robust standard errors in parentheses; clustered by UZA. In (1)-(6), transit capacity instrumented by: Federal transit funding

in UZA, lagged two periods.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)

44


