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Abstract

Verticillium dahliae is a soil borne fungus that is introduced to the soil via infested

spinach seeds and that causes subsequent lettuce crops to be a�icted with Verticillium

wilt. Due to Verticillium wilt, a supply chain externality arises between companies

selling spinach seed and growers who may grow lettuce. We analyze the externality

between growers and seed companies. We estimate the grower's bene�ts from and the

spinach seed company's cost to testing and cleaning spinach seeds in order to reduce

the level of microsclerotia. To estimate a grower's bene�ts from testing and cleaning

spinach seeds, we develop and estimate a dynamic structural econometric model of

farmers' dynamic crop choice and fumigation decisions. We use our estimates of the

grower's bene�ts from and spinach seed company's costs to testing and cleaning spinach

seeds to determine the welfare-maximizing level of seed testing and cleaning. Our

model enables us to compare the status quo, in which growers and seed companies

are independent, to a vertically integrated industry, in which one company produces

spinach seeds, as well as spinach, lettuce, and other crops. The vertically integrated

industry would internalize the externality between growers and seed companies, and

would choose the welfare-maximizing level of seed testing and cleaning. We �nd that

signi�cant welfare gains arise only when the seed company tests and cleans the spinach

seeds so thoroughly that planting spinach does not have any signi�cant negative e�ect

on grower payo�s after controlling for spinach price. Our work regarding the seed

company and grower externality sheds light on how treatment of spinach seeds could

potentially reduce externalities between seed companies and growers.

Keywords: agricultural economics, externalities

JEL codes: Q10, Q00, L23

1Carroll: California State University at Chico; clcarroll@csuchico.edu. Carter: University of California at Davis;
colin@primal.ucdavis.edu. Goodhue: University of California at Davis; goodhue@primal.ucdavis.edu. Lin Lawell: Cornell
University; clinlawell@cornell.edu. We thank Krishna V. Subbarao, Peter Orazem, Wolfram Schlenker, Paul Scott, So�a Villas-
Boas, Marca Weinberg, and Jinhua Zhao for invaluable discussions and comments. We also received helpful comments from
conference participants at the NBER Understanding Productivity Growth in Agriculture Research Conference, the American
Agricultural Economics Association (AAEA) Annual Meeting, the Giannini Agricultural and Resource Economics Student Con-
ference, and the Interdisciplinary Graduate and Professional Student (IGPS) Symposium. We received funding from USDA
NIFA (grant # 2010-51181-21069). We also bene�ted from valuable discussions with Tom Bengard, Bengard Ranch; Kent Brad-
ford, Seed Biotechnology Center UC-Davis; Leslie Crowl, Monterey County Agricultural Commissioner's O�ce; Rich DeMoura,
UC-Davis Cooperative Extension; Gerard Denny, INCOTEC; Lindsey du Toit, Washington State University; Thomas Flewell,
Flewell Consulting; Hank Hill, Seed Dynamics, Inc.; Steve Koike, Cooperative Extension Monterey County; Dale Krolikowski,
Germains Seed Technology; Chester Kurowski, Monsanto; Donald W. McMoran, WSU Extension; Marc Meyer, Monsanto; Chris
Miller, Rijk Zwaan; Augustin Ramos, APHIS; Scott Redlin, APHIS; Richard Smith, Cooperative Extension Monterey County;
Laura Tourte, UC Cooperative Extension Santa Cruz County; Bill Waycott, Monsanto; and Mary Zischke, California Leafy
Greens Research Program. Carter and Goodhue are members and Lin Lawell is a former member of the Giannini Foundation
of Agricultural Economics. All errors are our own.



1 Introduction

Invasive plant pathogens, including fungi, cause an estimated $21 billion in crop losses each

year in the United States (Rossman, 2009). California, a major agricultural producer and

global trader, sustains signi�cant economic damage from such pathogens. Fungi damage a

wide variety of California crops resulting in yield and quality related losses, reduced exporta-

bility, and increased fungicide expenditures (Palm, 2001).

This paper focuses on Verticillium dahliae, a soil borne fungus that is introduced to

the soil via infested spinach seeds and that causes subsequent lettuce crops to be a�icted

with Verticillium wilt (V. wilt). Scientists believe that contaminated spinach seeds imported

into California are responsible for the epidemic levels of the disease in lettuce.

Due to V. wilt, a supply chain externality arises between companies selling spinach

seed and growers who may grow lettuce. Spinach seed companies may not have an incentive

to test or clean spinach seeds, as they do not internalize the costs that infected spinach seeds

impose on growers. Thus, decisions made by seed companies regarding whether and how

much to test or clean spinach seeds impose an externality on growers. In this paper, we

analyze the externality between growers and seed companies.

To estimate a grower's bene�ts from testing and cleaning spinach seeds, we develop and

estimate a dynamic structural econometric model of growers' dynamic crop choice and fumi-

gation decisions. The structural model generates parameter estimates with direct economic

interpretations.

We use a dynamic model for several reasons. First, the control options (fumigation,

planting broccoli, and not planting spinach) require incurring costs or foregoing pro�t in the

current period for possible future bene�t, and are thus are best modeled with a dynamic

model.2 Second, because cropping and fumigation decisions are irreversible (as is the damage

2Some of these actions may also generate bene�ts in the current period for the current crop. For example,
in addition to being an investment in protecting potential future lettuce crops from V. wilt, methyl bromide
is bene�cial to the current crop of strawberries. However, on net, these control options generally require
incurring net costs or foregoing pro�t in the current period.
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from V. wilt), there is uncertainty over the reward from cropping and fumigation decisions,

and growers have leeway over the timing of cropping and fumigation decisions. Thus, there

is an option value to waiting which requires a dynamic model (Dixit and Pindyck, 1994).

Third, Verticillium dahliae takes time to build up in the soil, and once present, persists for

many years.

We then estimate the spinach seed company's cost to testing and cleaning spinach seeds

in order to reduce the level of microsclerotia, and compare the spinach seed company's cost

to the grower's bene�ts. We use our estimates of the grower's bene�ts from and spinach seed

company's costs to testing and cleaning spinach seeds to determine the welfare-maximizing

level of seed testing and cleaning.

Our model enables us to compare the status quo, in which growers and seed com-

panies are independent, to a vertically integrated industry, in which one company produces

spinach seeds, as well as spinach, lettuce, and other crops. The vertically integrated industry

would internalize the externality between growers and seed companies, and would choose the

welfare-maximizing level of seed testing and cleaning.

Our work regarding the seed company and grower externality sheds light on how treat-

ment of spinach seeds could potentially reduce externalities between seed companies and

growers.

In the remainder of this paper, Section 2 provides background on the externality and

why vertical integration may be a possible solution. Section 3 is a brief review of the relevant

literature. In Section 4, we develop and estimate a dynamic structural econometric model to

estimate a grower's bene�ts from testing and cleaning spinach seeds. In Section 5, we model

the externality between seed companies and growers. Section 6 concludes.
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2 Background

Lettuce is an important crop in California, and the majority of lettuce production in the

United States occurs in California. The value of California's lettuce crop was $1.7 billion in

2013 (National Agricultural Statistics Service, 2015). Measured by value, lettuce ranks in

the top ten agricultural commodities produced in California (National Agricultural Statistics

Service, 2015). Lettuce production value is 27% of Monterey County's agricultural produc-

tion value (Monterey County Agricultural Commissioner, 2015). Approximately ten to �fteen

thousand acres are planted to lettuce in Monterey County each season (spring, summer, and

fall). Spinach, broccoli, and strawberries are also important crops in the region.

Verticillium dahliae is a soil borne fungus that causes subsequent lettuce crops to be

a�icted with V. wilt. No e�ective treatment exists once plants are infected by the fungus

(Xiao and Subbarao, 1998; Fradin and Thomma, 2006). The fungus can survive in the soil

for fourteen years as microsclerotia, which are resting structures that are produced as the

pathogen colonizes a plant. This allows the fungus to remain in the soil even without a host

plant. When a susceptible host is planted, microsclerotia attack through the roots, enter

the water conducting tissue, and interfere with the water uptake and transport through the

plant. If the density of microsclerotia in the soil passes a threshold, a disease known as V.

wilt occurs.

V. wilt �rst killed a lettuce (Lactuca sativa L.) crop in California's Parajo Valley in

1995. Prior to this, lettuce was believed to be immune. Since then, the disease has spread

rapidly through the Salinas Valley, the prime lettuce production region of California. By

2010, more than 150 �elds were infected with V. wilt (Atallah, Hayes, and Subbarao, 2011),3

amounting to more than 4,000 acres (Krishna Subbarao, personal communication, 2013).4

3As not all the �elds that were infected by 2010 were known at the time Atallah, Hayes, and Subbarao
(2011) was published, the number of �elds a�ected by 2010 �elds was actually even higher, numbering over
175 �elds (Krishna Subbarao, personal communication, 2013).

4Krishna Subbarao is a Professor of Plant Pathology and Cooperative Extension Specialist at the Uni-
versity of California at Davis. He has studied V. wilt for many years.
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Although growers have resisted reporting the extent of the disease since 2010, it is likely

that the number of a�ected acres has increased since then (Krishna Subbarao, personal

communication, 2013).

Verticillium dahliae is introduced to the soil in three possible ways. First, V. wilt can

be spread locally from �eld to �eld by workers or equipment. Local spread is a relatively

minor contributor, however, and growers have taken steps to mitigate this themselves, for

example by cleaning equipment before moving between �elds.

Second, V. wilt is introduced to the soil via infested lettuce seeds. However, studies of

commercial lettuce seed lots from around the world show that fewer than 18% tested positive

for Verticillium dahliae and, of those, the maximum incidence of infection was less than 5%

(Atallah, Hayes, and Subbarao, 2011). These relatively low levels do not cause V. wilt in

lettuce at an epidemic level. Models of the disease suggest that it would be necessary for

lettuce seed to have an incidence of infection of at least 5% and be planted back to back for

three to �ve seasons in order for the disease to appear, with at least �ve subsequent seasons

required for the high disease levels currently seen (Atallah, Hayes, and Subbarao, 2011).

Third, V. wilt is introduced to the soil via infested spinach seeds. Spinach seeds have

been shown to be the main source of the disease (du Toit, Derie, and Hernandez-Perez, 2005;

Short, D.P.G. et al., 2015); 89% of spinach seed samples are infected, with an incidence of

infected seeds per sample of mean 18.51% and range 0.3% to 84.8% (du Toit, Derie, and

Hernandez-Perez, 2005). The precise impact of planting infected spinach seeds on V. wilt

of lettuce was recently assessed and proven to be the cause of the disease on lettuce (Short,

D.P.G. et al., 2015). The pathogen isolated from infected lettuce plants is genetically identical

to the pathogen carried on spinach seeds (Atallah et al., 2010).

Infected spinach seeds carry an average of 200 to 300 microsclerotia per seed (Maruthacha-

lam et al., 2013). As spinach crops are seeded at up to nine million seeds per hectare for

baby leaf spinach, even a small proportion of infected seeds can introduce many microscle-

rotia (du Toit and Hernandez-Perez, 2005).
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Testing or cleaning seeds is an important option for preventing Verticillium dahliae

from being introduced into a �eld, but can be uncertain and potentially costly. Although

Verticillium dahliae cannot be completely eliminated by seed cleaning, incidence levels in

spinach seed can be signi�cantly reduced (du Toit and Hernandez-Perez, 2005). Very recent

developments in testing procedures suggest that testing spinach seed for Verticillium dahliae

might soon be feasible on a commercial basis. Moreover, a very recent innovation speeds

up testing spinach seeds. Previously, testing for Verticillium dahliae in spinach seeds took

approximately two weeks and could not accurately distinguish between pathogenic and non-

pathogenic species (Duressa et al., 2012). This new method takes only one day to complete,

is highly sensitive (as it is able to detect one infected seed out of 100), and can distinguish

among species (Duressa et al., 2012).

In addition to testing and cleaning spinach seeds, V. wilt can also be controlled by

restricting the imports of spinach seeds infested with Verticillium dahliae, but doing so would

have trade implications. Currently, the United States has no phytosanitary restrictions on

spinach seed imports, but Mexico prohibits the importation of seeds if more than 10% are

infected (IPC, 2003). V. wilt can also be prevented or controlled by the grower by fumigating

with methyl bromide, planting broccoli (a low-return crop), or not planting spinach. These

control options require long-term investment for future gain (Carroll et al., 2017b).

Although testing or cleaning seeds may prevent Verticillium dahliae from being intro-

duced into a �eld, spinach seed companies may not have an incentive to test or clean spinach

seeds, as they do not internalize the costs that infected spinach seeds impose on growers.

Thus, decisions made by seed companies regarding whether and how much to test or clean

spinach seeds impose a supply chain externality on growers.

There are several reasons why the supply chain externality exists between spinach seed

companies and growers. First, testing and cleaning spinach seeds is uncertain and potentially

costly, and although testing or cleaning seeds may prevent Verticillium dahliae from being

introduced into a �eld, spinach seed companies may not have an incentive to test or clean
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spinach seeds, as they do not internalize the costs that infected spinach seeds impose on

growers.

A second reason a supply chain externality exists between spinach seed companies and

growers is that, owing to asymmetric information, the price signal for tested and cleaned

spinach seed versus contaminated seed is weak. Growers buying spinach seeds with the

intention of planting lettuce in the following season may be willing to pay a very high price

for clean seed after accounting for their potential loss in harvest revenue for lettuce and

penalties for breaking contracts with lettuce shippers if their lettuce is a�icted with V.

wilt. However, if a seed company has infected seed that it cannot otherwise sell, the seed

company may be willing to pay a high price to clean the seed without passing on the cost if

the seed company wishes to maintain market share (Dale Krowlikowski, Head of Operations

and Research, Germains Technology Group, personal communication, 2015). Thus, owing to

asymmetric information, there is no direct price signal between seed companies and growers,

and, as a consequence, seed companies impose an externality on growers that they do not

internalize.

A third reason a supply chain externality exists between spinach seed companies and

growers is that V. wilt in lettuce is an example of a market failure in which transaction costs

between seed companies and lettuce growers prevent them from reaching a potentially more

e�cient equilibrium solution. Transaction costs increase with the number of agents. There

are a large number of growers attempting to bargain with a relatively small number of seed

companies. Even large growers have relatively little bargaining power with respect to the

seed companies, making negotiation and contracting di�cult. Because microsclerotia are

carried mainly on spinach seeds rather than lettuce seeds directly, lettuce growers have little

bargaining power. In addition, growers have di�erent incentives and priorities, rendering

collective action ine�ective. Up to 30% of spinach is now organic, so cleaning methods that

are desirable to some growers are not acceptable to others. Due to the small number of

seed companies, some growers are hesitant to resort to legal means, such as working toward
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a seed testing or cleaning requirement from the County Agricultural Commissioner, lest

seed companies decide to leave the market. Such transactions costs may also impede other

possible solutions such as third party testing.

Thus, owing to the lack of incentives for spinach seed companies to test or clean spinach

seeds, asymmetric information, and transaction costs, spinach seed companies are unwilling

to test or clean spinach seeds, especially as spinach producers are not a�ected by this disease.

Thus, decisions made by seed companies regarding whether and how much to test or clean

spinach seeds impose a supply chain externality on growers.

We consider vertical integration of the industry as a solution to the supply chain exter-

nality problem. Williamson (1971) describes some of the cases in which vertical integration

is an appropriate tool to mitigate an externality, via �substituting internal organization for

market exchange�. While in some cases vertical integration would capture a positive exter-

nality (Brewin et al., 2014), vertical integration would address Verticillim wilt by eliminating

a negative externality.

3 Literature Review

Our paper relates to several strands of literature. The �rst strand of literature to which our

paper relates is on import controls and cleaning technology. As invasive species introductions

have increased with greater levels of trade, economic analyses have become increasingly

important for pest prevention and management (Levine and D'Antonio, 2003). Countries

protect their citizens, animals, and plants from invasive species. Members of the World

Trade Organization (WTO) are bound by the Agreement on the Application of Sanitary and

Phytosanitary Measures (SPS Agreement), which states that in protecting human, plant, and

animal health, a country must use the least trade restricting policy possible to achieve the

desired level of protection. This agreement corrects externalities and market ine�ciencies

caused by invasive species (Olson, 2006). Policy options include tari�s, quarantines, and
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export certi�cations.

Most of the research regarding trade, trade policy, and invasive species damage focuses

on calculating the expected marginal damage from invasive species and using tari�s to inter-

nalize the related externalities (Springborn, Romagosa, and Keller, 2011). Mérel and Carter

(2008) discuss the optimal two-part tari� to cover the cost of inspections and the cost of

damages from contaminated goods. An alternative to tari�s is quarantine, as in James and

Anderson (1998). Brennan et al. (2004) provide an example of the impacts of a quarantine,

in which growers lose access to the wheat seed export market as a result of a Karnal bunt

outbreak. Batabyal and Beladi (2007) consider the incentives of the �rm, and whether ex-

port certi�cation can encourage �rms to comply with quality requirements. Each of these

papers focuses on the interaction between the government and importing �rms.

Because the production of spinach seeds requires long, cool days, spinach seeds are

not grown in California but produced in the Paci�c Northwest or imported from other

countries. Thus, trade policies are important. The SPS Agreement provides a legal basis

for preventing the importation of contaminated seeds; however, only Mexico has taken this

step with regard to spinach seeds. All of the methods described above, including tari�s,

quarantines, and export certi�cations, require that the product can be tested. Only recently

have quick, e�cient tests been developed to detect Verticillium dahliae in spinach seed.

Further, the method described by Mérel and Carter (2008) requires that contaminated seeds

be cleaned. Du Toit and Hernandez-Perez (2005) test hot water and chlorine for their

potential to eliminate or reduce the e�ect of Verticillium dahliae and other pathogens on

spinach. Further work in this area could lead to signi�cant reductions in the amount of

Verticillium dahliae carried by seeds.

A second strand of literature to which our paper relates is on vertical integration.

Vertical integration theory dates back to Coase (1937), who argued that �rms exist to reduce

transaction costs in markets. The theory was advanced by Williamson (1971), among others.

The size and scope of a �rm ought to depend on whether and how they o�er a transaction
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cost advantage. Vertical integration, as opposed to sourcing inputs or selling outputs, should

re�ect advantages regarding transaction costs. To de�ne such an advantage requires an

explanation for why market transactions are ine�cient and why those ine�ciencies cannot

be mitigated using contracts or pricing.

By nature, contracts are incomplete and cannot account for every possible contingency.

This is especially true when complexity and uncertainty make de�ning safeguards di�cult.

For example, Williamson (1971) gives the example of a dispute within a �rm compared to

one between separate �rms. In the �rst case, a senior manager can resolve the issue; in the

second case, the �rms must resort to (costly) negotiation or litigation.

Empirical testing of transaction cost theory and vertical integration has proved dif-

�cult (Bresnahan and Levin, 2012). Rarely are there counterfactuals to show what would

have happened had �rms not vertically integrated or vice versa, all else being constant.

Many studies report statistically signi�cant correlation between integration decisions, and

theoretically-relevant transaction characteristics (Bresnahan and Levin, 2012).

De Fontenay and Gans (2014) provide a theoretical model of bilateral bargaining with

externalities. They consider possible outcomes when agents bargain bilaterally with one an-

other and negotiation outcomes produce externalities. We adapt this framework to consider

the externality generated by spinach seeds on lettuce production. Brewin et al. (2014) ana-

lyze an empirical example in which specialized farming is compared to integrated enterprises.

They consider hog and forage operations that operate separately and those that operate as

a joint farm. Hog operations produce large amounts of manure that is costly to dispose of.

Forage operations require fertilizers. In integrated operations, manure from the hogs can be

used as fertilizer for forage, bene�ting the forage portion of the farm and eliminating the

externality inherent in the hog farm. The non-integrated operations su�er because price sig-

nals are not complete in the market. In an area with a large population of livestock, manure

has a very low or zero price for hog growers and is external to their pro�t maximization.

Integration captures this positive externality.
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A third strand of literature to which our paper relates is on the economics of pest

management (Hueth and Regev, 1974; Carlson and Main, 1976; Wu, 2001; Noailly, 2008;

McKee et al., 2009), which focuses on pests for which treatment is available after crops

are a�ected. In contrast, V. wilt cannot be treated once crops are a�ected. Existing work

on crop disease, such as Johansson et al. (2006) and Gomez, Nunez, and Onal (2009) on

soybean rust, and Atallah et al. (2015) on grapevine leafroll disease, focuses on spatial issues

regarding the spread of the disease. In contrast, V. wilt has only a limited geographic impact,

and thus dynamic considerations are more important than spatial ones for V. wilt.

A fourth strand of literature to which our paper relates is on dynamic models in

agricultural management. As Verticillium dahliae persists in the soil for many years, a

static model such as that proposed by Mo�tt, Hall, and Osteen (1984) will not properly

account for the future bene�ts of reducing microsclerotia in the soil. The dynamics of V.

wilt more closely �t the seed bank management model by Wu (2001).

Dynamic models have been used in agricultural management to analyze many prob-

lems. Weisensel and van Kooten (1990) use a dynamic model of growers' choices to plant

wheat, or to use tillage fallow versus chemicals to store moisture. In a related paper, van

Kooten, Weisensel, and Chinthammit (1990) use a dynamic model that explicitly includes

soil quality in the grower's utility function and the trade-o� between soil quality (which may

decline due to erosion) and net returns.

Our paper builds on the literature on dynamic structural econometric modeling. Rust's

(1987; 1988) seminal papers develop a dynamic structural econometric model using nested

�xed point maximum likelihood estimation. This model has been adapted for many ap-

plications, including bus engine replacement (Rust, 1987), nuclear power plant shutdown

(Rothwell and Rust, 1997), water management (Timmins, 2002), agriculture (De Pinto and

Nelson, 2009; Scott, 2013), air conditioner purchases (Rapson, 2014), wind turbine shut-

downs and upgrades (Lin Lawell, 2017), and copper mining decisions (Aguirregabiria and

Luengo, 2016), short- versus long-term decision-making for disease control (Carroll et al.,
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2017b), and agricultural productivity (Carroll et al., 2017a).

4 Estimating Grower Bene�ts

To estimate a grower's bene�ts from testing and cleaning spinach seeds, we develop and

estimate a dynamic structural econometric model of growers' dynamic crop choice and fumi-

gation decisions. The structural model generates parameter estimates with direct economic

interpretations.

4.1 Data

We use Pesticide Use Reporting (PUR) data from the California Department of Pesticide

Regulation.5 Our data set is composed of all �elds in Monterey County on which any

regulated pesticide was applied in the years 1993 to 2011, inclusive.6 Additional data on

prices, yields, and acreage come from the Monterey Agricultural Commissioner's O�ce. We

collapse the data set into monthly observations.

We group the crops into six categories: susceptible (which includes artichoke, strawber-

ries, and cabbage, but excludes lettuce which we represent separately), resistant (cauli�ower

and celery), lettuce, spinach, broccoli, and other.7 From these, we form nine action choices:

susceptible, susceptible with recent fumigation, resistant, broccoli, broccoli with recent fu-

migation, lettuce, lettuce with recent fumigation, spinach, and other.8

5For more information see: http://www.cdpr.ca.gov/docs/pur/purmain.htm.
6We use the �eld identi�er as as well as the section, township, and range data from the PUR data set

to match �elds across time. We delete a small number of observations that are non-agricultural uses (golf
courses, freeway sidings, etc.).

7To make the model manageable, we include only the most common crops in Monterey County and those
that are most often grown in rotation with lettuce. The crops explicitly included in our model account for
nearly 90% of the observations. We account for the many rarely planted crops by including an "other" option,
which includes various herbs, berries, nursery products, nuts, wine grapes, livestock, and many others.

8The data contain the crop planted in each �eld for each recorded pesticide application. Although the
focus of our research is on methyl bromide, the other pesticides provide observations regarding which crops
are in the ground at which times. Due to the nature of the data, sometimes we do not observe the entire
production cycle of a crop. For example, strawberries are often in the ground for a year or more; however, if
there is no registered pesticide applied in one of those months, a gap in the production cycle may appear in
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For control options, we use recent histories for broccoli and methyl bromide because

their e�ects on microsclerotia are relatively short-lived. Microsclerotia levels rebound within

one to two seasons, or approximately one year. Thus, broccoli history is the number of

months broccoli was planted in the last 12 months, and methyl bromide history is the

number of months methyl bromide was used in the last 12 months.

The vast majority of �elds (94% of observations) in our data set have only one grower

over the entire time period. Of these, we analyze those long-term growers who appear in

the data on from 1994 to 2010, and we model their decision-making as an in�nite horizon

problem. This data set on long-term growers consists of 615 �elds, each over seventeen years.

We use a marketing year average price for each crop9 to represent growers' expectations

about prices for each year. The marketing year average price is in units of dollars per acre,

and therefore measures revenue per acre and incorporates yield.10 Using the current year's

marketing year average price assumes that growers have rational expectations about what

the average marketing year price will be that year.11 The Monterey County Agricultural

our data. We account for this issue in several ways. As long as the missing data are missing for exogenous
reasons, missing data will not bias the results. Since there are no pesticide treatments for V. wilt once crops
are in the ground, we have reason to believe that missing months mid-production cycle due to no pesticide
application in that month are exogenous to the impact of V. wilt on crop and methyl bromide fumigation
choice. We compared the distribution of these months between short-term and long-term growers and �nd
that they are similar distributions. Finally, in the simulations, we simulate all months in the time period, but
only count grower-months that are present in the actual data when calculating welfare and other statistics
for comparison purposes.

9For lettuce, we use a weighted average of the prices for head and leaf lettuce. In the early years of the
data set, romaine and other types of lettuce were not broken out separately, so gross revenue numbers vary
based on this reporting, but do not a�ect the discretized value of the price.

10We look at gross revenue rather than net revenue due to data limitations. Costs are captured by our
crop-fumigation dummies and our constant. Estimating net revenue did not improve the overall model, and
cost di�erences among crops are mainly driven by methyl bromide fumigation, which is explicitly included
in the model, and/or the di�erence between strawberry costs compared to other crops. Strawberry costs are
generally an order of magnitude higher than for the vegetable crops, in part due to fumigation cost according
to Richard Smith, Farm Advisor for Vegetable Crop Production & Weed Science with the University of
California Cooperative Extension in Monterey County. We also attempted to incorporate this e�ect by
including dummy variables for the di�erent crop choices and fumigation, with resistant crops as the baseline.
Unsurprisingly, the susceptible dummy variables (which includes strawberries) was collinear with the methyl
bromide fumigation variable; we therefore do not include the susceptible crop dummy variable in our model.
We expect the crop-fumigation dummies to at least partially capture the cost di�erences among the di�erent
crops.

11Instead of rational expectations about price, another possible assumption is that growers' best guess
for this year's price is last year's price. The results are robust to whether we use lagged prices rather than
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Commissioner's O�ce publishes annual crop reports including prices, yields harvest, and

acreages for major crops in the county. Monterey County is a major producer of many of

the crops included in our model. For most crops, these prices are highly correlated with

California-wide price data published by the National Agricultural Statistics Service. We

discretize the marketing year average price into 6 bins; the marketing year average price bins

are shown in Figure 1.

We combine the marketing year average price data with data on the timing of harvests

for various crops in Monterey. For each crop, the harvest month dummy variable for that

crop is equal to one in months during which that crop may be harvested, and zero in months

during which that crop is not harvested (i.e., winter months for most crops).12 For all crops,

we have observations during the winter months, including crops that have just been planted

and are not yet ready for harvest, and crops such as strawberries that overwinter for harvest

in the coming year.

Summary statistics for the state variables for long-term growers are in Table 1. The

mean discretized price for broccoli is relatively low, a�rming that broccoli is a low-return

crop, and therefore that planting broccoli to control V. wilt involves forgoing pro�t in the

current period for future bene�t. Spinach is a relatively small portion of the acreage grown

in Monterey County, approximately a tenth of the size of the acreage planted to lettuce

according to the most recent Monterey County Crop Report.

Figure 2 plots the actual fraction of grower-months in each action type for the long-

term growers. As seen in Figure 2, lettuce accounts for over 60% of the grower-months

for these long-term growers. Figure 3 plots the actual fraction of grower-months in each

action by month of year. The actual fraction of grower-months in each action varies by the

month of the year, with lettuce predominant in the spring and summer months and other

current prices (Carroll et al., 2017b).
12There is a separate harvest month dummy variable for each crop-month. These data come from Richard

Smith, Farm Advisor for Vegetable Crop Production & Weed Science with the University of California
Cooperative Extension in Monterey County.
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and susceptible crops having the highest proportion in the winter months. Figure 4 plots

the actual fraction of grower-months in each action type over the years. The proportions are

relatively constant across years.

4.2 Econometric Model

To estimate a grower's bene�ts from testing and cleaning spinach seeds, we develop and

estimate a single-agent dynamic structural econometric model using the econometric methods

developed by Rust (1987). Each month t, each grower i chooses an action dit ∈ D. The

possible actions for each grower for each month include one of �ve crops (resistant, susceptible

(other than lettuce), lettuce, spinach, and broccoli), combined with the choice to fumigate

with methyl bromide. To focus on the crops most relevant to this problem, we group the

crops resistant to V. wilt together and the crops (other than lettuce) susceptible to V.

wilt together. Lettuce, spinach, and broccoli are included separately as these crops are most

relevant to V. wilt. Susceptible crops include strawberries, artichoke, and cabbage. Resistant

crops include cauli�ower and celery.

Although the raw data are observations on the day and time any fumigant is applied

on a �eld, we aggregate to monthly observations. Growers are generally only making one

crop-fumigation decision each season. The length of the season varies among crops, and can

be as short as one month for spinach and more than a year for strawberries. For this reason,

we choose a month as the time period for each crop-fumigation decision. To cover the case

of multi-month seasons, we include a dummy variable for whether the grower continues with

the same crop chosen in the previous month. Moreover, because not all crops are harvested

in all months, we also include dummy variables for each crop-month indicating whether a

particular month is a harvest month for a particular crop. For example, although Monterey

County grows crops during a large portion of the year, few crops are harvested in the winter

months.

To estimate growers' losses from V. wilt, it would be ideal to observe actual prices,
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quantities, costs, and level of microsclerotia for both growers facing losses from V. wilt and

those who are not. In theory, pro�t maximizing growers make optimal planting and fumi-

gating decisions factoring in planting and input costs, as well as the costs of microsclerotia

building up in the soil over time and potentially impacting future crops. Unfortunately, data

on growers' actual price, quantity, costs, and level of microsclerotia are not available.13

We account for the important factors in a grower's pro�t maximizing decision by

including in the payo� function state variables that a�ect revenue; state variables that a�ect

costs; state variables that a�ect both revenue and costs; and state variables that a�ect either

revenue or cost by a�ecting the microsclerotia and the spread of V. wilt. The di�erent state

variables we include may have e�ects on price, yield, input costs, or microsclerotia levels.

Costs are accounted for by the crop-fumigation dummies and the constant in our model,

and we allow these costs to di�er between the early and later periods of our data set. The

largest cost di�erence among crops is due to fumigation, so we include a dummy for methyl

bromide fumigation to account for the net costs of fumigation and to absorb cost di�erences

among crops.

The per-period payo� to a grower from choosing action dit at time t depends on the

values of the state variables sit at time t as well as the choice-speci�c shock εit(dit) at time

t. The state variables sit at time t include crop prices for each crop (priceit(dit)), dummy

variables for each crop indicating whether this month is a harvest month for that crop

(harvest month dummyit(dit)), dummy variables for each crop indicating whether that crop

is the same as the crop chosen in the previous month (last crop dummyit(dit)), a variable

measuring whether and how much the methyl bromide control option was used in the past

(methyl bromide historyit), and a variable measuring whether and how much the broccoli

control option was used in the past (broccoli historyit).

There is a choice-speci�c shock εit(dit) associated with each possible action dit ∈ D. Let
13The University of California at Davis "Cost and Return Studies" have a limited number of estimates

for the revenue and costs, but estimates are not available for all the crops and years in our model.
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εit denote the vector of choice-speci�c shocks faced by grower i at time t: εit ≡ {εit(dit)|dit ∈

D}. The vector of choice-speci�c shocks εit is observed by grower i at time t, before grower

i makes his time-t action choice, but is never observed by the econometrician.

The per-period payo� to a grower from choosing action dit at time t is given by:14

U(dit, sit, εit, θ) = π(dit, sit, θ) + εit(dit),

where the deterministic component π(·) of the per-period payo� is given by:

π(dit,sit, θ) = θ1 · spinach dummyit

+ θ2 ·methyl bromide dummyit

+ θ3 · broccoli dummyit

+ θ4 · (lettuce dummyit* methyl bromide historyit)

+ θ5 · (lettuce dummyit * broccoli historyit)

+ θ6 · (spinach dummyit*methyl bromide historyit) (1)

+ θ7 · (spinach dummyit*broccoli historyit)

+ θ8 · lettuce dummyit

+ θ9 · (priceit(dit)* harvest month dummyit(dit))

+ θ10 · last crop dummyit(dit)

+ θ11,

where spinach dummyit, methyl bromide dummyit, broccoli dummyit, and lettuce dummyit are

among the possible actions dit ∈ D.
14Because the model requires discrete data, we bin the action and state variables. This means that there

are no meaningful units associated with the variables, payo�s, or value functions; and the payo� and value
functions described in the model do not explicitly measure revenue or pro�t. However, the payo� function
does include action and state variables that a�ect revenue (such as price); costs (such as the methyl bromide
dummy); both revenue and costs; and either revenue and/or costs through their e�ect on microsclerotia and
the spread of V. wilt.
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Spinach will tend to increase microsclerotia, thus decreasing the quantity harvested,

increasing microsclerotia costs, and potentially increasing input costs as growers need to

fumigate more. The coe�cient θ1 on the spinach dummy captures the e�ects of spinach on

payo�s that are not internalized in the spinach price.

Especially in more recent years, methyl bromide fumigation is very expensive and

raises input costs dramatically. Fumigation is the largest cost di�erence among crops. Thus,

methyl bromide fumigation is a control option that requires incurring costs or forgoing pro�t

in the current period for future bene�t. The coe�cient θ2 on the dummy for methyl bromide

fumigation accounts for the costs of fumigation and absorbs the cost di�erences among

crops.15

Broccoli is not highly pro�table, but may yield future bene�ts for lettuce growers.

Thus, planting broccoli is a control option that requires incurring costs or forgoing pro�t in

the current period for future bene�t. The coe�cient θ3 on the broccoli dummy captures the

e�ects of broccoli on payo�s that are not internalized in the broccoli price.

Since the control options require incurring costs or forgoing pro�t in the current period

for future bene�t, previous use of control options may a�ect current payo�s. We therefore

include variables indicating the fumigation history with methyl bromide within the last twelve

months and the broccoli history within the last twelve months. We expect methyl bromide

fumigation history and broccoli history to be closely linked to the presence of microsclerotia

in a �eld. Methyl bromide fumigation history and broccoli history will tend to decrease

microsclerotia levels in the soil, leading to increased harvest for susceptible crops, lower

microsclerotia costs, and lower input costs.

We interact the variables measuring previous use of control options with a dummy

variable for lettuce being planted in the current period because lettuce is the primary sus-

15In addition to being an investment in protecting potential future lettuce crops from V. wilt, methyl
bromide can also be bene�cial to the current crop of strawberries. However, on net, methyl bromide fumi-
gation generally requires incurring net costs or foregoing pro�t in the current period. A negative sign on
the coe�cient on the dummy for methyl bromide fumigation would indicate a net cost to methyl bromide
fumigation.
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ceptible crop. Methyl bromide fumigation history interacted with planting lettuce today

would have a positive coe�cient θ4 if having fumigated with methyl bromide is an e�ective

control option. Similarly, broccoli history interacted with planting lettuce today would have

a positive coe�cient θ5 if having planted broccoli is an e�ective control option. These two

parameters therefore enable us to assess the e�ectiveness of these two respective control

options.

We also interact the methyl bromide history and broccoli history variables with the

dummy variable for spinach being planted in the current period, to capture whether the

undesirability of spinach is mitigated by having methyl bromide history and/or broccoli

history.

Growers continue to plant lettuce even though it is susceptible, and the coe�cient θ8

on the lettuce dummy captures any additional bene�t of lettuce beyond its price.

Growers base decisions in part on the price or gross return they expect to receive for

their harvested crops (Scott, 2013). We interact price with a dummy variable that is equal to

one during the harvest season for each crop to capture the fact that although a grower may

plant the same crop for multiple months, he only receives revenue during the months of the

harvest season for that crop.16 In particular, the expected gross revenue to harvesting a crop

during non-harvest season months (e.g., during the winter) is 0.17 Thus, by incorporating

16On average, the length of the harvest season is less than 2 months in our data set, and equal to about
1.5 months on average for most crops. The exception are susceptible crops, which include strawberries,
and which have an average harvest season length of 2.59 months. In the case of strawberries, however,
strawberries are an ongoing harvest crop and therefore the more months in the harvest season it is grown,
the more product can be harvested, so it is reasonable to assume that a grower may receive revenue each
harvest month during which strawberries are grown. We choose not to model the grower as only receiving the
revenue for his crop the �rst month of the harvest season, as this would not explain why growers may plant
the same crop for multiple months in the harvest season. Staying in the harvest season longer sometimes
yields higher revenue because it enables the grower to harvest more product or replant the crop for more
harvest, both of which are better captured by having the grower receive more revenue if he stays in the
harvest season longer. For similar reasons, we choose not to model the grower as only receiving the revenue
for his crop the last month of the harvest season. As seen in Carroll et al. (2017b), we �nd that the results
are robust to whether we divide the marketing year average price for each crop by its average harvest season
length, and therefore to whether we assume growers who plant the same crop for multiple months receive
more revenue than those who plant that crop for only one month.

17The costs of inputs are included in the constant, which we expect to be negative.
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the expected gross return in the payo� of function and by modeling the dynamic decision-

making of growers of when and what to plant, and whether and when to fumigate, our model

accounts for the biological reality of how long a crop needs to be in the ground, because a

pro�t maximizing grower is unlikely to pull out the crop before it is ready to harvest (and

therefore before he would receive the expected return), barring problems such as V. wilt or

other issues that meant that crop was unhealthy.

The last crop dummy variable is equal to one if the crop chosen this month is the

same as the crop planted in the previous month. The last crop dummy captures both the

requirement to grow a particular crop over multiple months, as well as any tendency for a

grower to choose to replant the same crop over and over again, perhaps harvest after harvest.

The value function for a long-term grower, which gives the present discounted value

of the grower's entire stream of per-period payo�s at the optimum, is given by the following

Bellman equation:

V (s, ε, θ) = max
d∈D

(π(d, s, θ) + ε(d) + β

∫
V (s′, ε′; θ)dPr(s′, ε′|s, ε, d, θ)), (2)

where β is the discount factor. We set our monthly discount factor to β = 0.999.

To estimate the unknown parameters θ = (θ1, ..., θ11), we use a nested �xed point

maximum likelihood estimation technique developed by Rust (1987, 1988). We assume the

observed choices are the result of the optimal decision rule dt = γ(st, εt) that solves the

Bellman equation.

We assume the state variables evolve as a �rst-order Markov process, with a transition

density given by Pr(st+1, εt+1|st, dt, εt, θ). Since the price variable we use is the annual county

average, we assume that the choice of any one grower would not have a large enough e�ect

to in�uence prices and therefore that the distribution of price next period does not depend

on any single grower's decisions this period; we therefore model crop prices as evolving

exogenously. The endogenous state variables (methyl bromide fumigation history, broccoli

19



history, and last crop dummy) evolve deterministically as a function of this period's action.

We assume that the state variables and the choice-speci�c shocks εit are conditionally

independent and that the choice-speci�c shocks εit are distributed multivariate extreme value.

Under these assumptions, the value function for a long-term grower given in Equation (2)

can be rewritten as:

V (s, ε, θ) = max
d∈D(s)

(π(d, s, θ) + ε(d) + βV c(s, d, θ)),

where V c(·) is the continuation value, which is the expected value of the value function next

period conditional on the state variables and action this period:

V c(s, d, θ) =

∫
V (s′, ε′; θ)dPr(s′, ε′|s, ε, d, θ). (3)

The choice probability for a long-term grower is given by:

Pr(d|s, θ) = exp (π(d, s, θ) + βV c(s, d, θ))∑
d̃∈D(s) exp (π(d̃, s, θ) + βV c(s, d̃, θ))

.

After obtaining the model predictions for the choice probabilities as functions of the

state variables and the unknown parameters θ, the parameters θ can then be estimated

using maximum likelihood. The likelihood function is a function of the choice probabilities,

and therefore a function of the continuation value V c(·). Solving for the parameters θ via

maximum likelihood thus requires an inner �xed point algorithm to compute the continuation

value V c(·) as rapidly as possible and an outer optimization algorithm to �nd the maximizing

value of the parameters θ, i.e., a �xed point calculation is nested within a maximum likelihood

estimation (MLE). From Blackwell's Theorem, the �xed point is unique.

Identi�cation of the parameters θ comes from the di�erences between per-period payo�s

across di�erent action choices, which in in�nite horizon dynamic discrete choice models are

identi�ed when the discount factor β and the distribution of the choice-speci�c shocks εit are
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�xed (Abbring, 2010; Magnac and Thesmar, 2002; Rust, 1994). In particular, the parameters

in our model are identi�ed because each term in the deterministic component π(·) of the per-

period payo� given in Equation (1) depends on the action dit being taken at time t, and

therefore varies based on the action taken; as a consequence, the parameters do not cancel out

in the di�erences between per-period payo�s across di�erent action choices and are therefore

identi�ed. For example, the coe�cient θ1 on the spinach dummy is identi�ed in the di�erence

between the per-period payo� from choosing to plant spinach and the per-period payo� from

any action choice dit that does not involve planting spinach.
18

Standard errors are formed by a nonparametric bootstrap. Fields are randomly drawn

from the data set with replacement to generate 100 independent panels each with the same

number of �elds as in the original data set. The structural model is run on each of the

new panels. The standard errors are then formed by taking the standard deviation of the

parameter estimates from each of the panels.

4.3 Results

The results for the long-term growers are presented in Table 2. We report our estimates for

the parameters in the per-period payo� function in Equation (1). The payo�s do not have

units because price is discretized and therefore no longer in dollars. Since we do not have

units for payo�s, we can compare only relative payo�s and welfare.

According to the results in Table 2, the coe�cient θ1 on the spinach dummy is signif-

icant and negative, suggesting that planting spinach is undesirable for reasons that are not

fully captured by its price.19 This provides evidence that V. wilt is a problem, since it is

likely due to the fact that spinach is associated with V. wilt that spinach is undesirable.20

18To identify the constant θ11, we normalize the deterministic component π(·) of the per-period payo�
from choosing "other" to 0.

19Because price is the discretized marketing average price of spinach per acre, the price measures revenue
per acre, and therefore incorporates yield as well. Thus, the signi�cant negative coe�cient on the spinach
dummy suggests that spinach is not desirable to plant for reasons that are not fully captured by its price,
yield, or revenue per acre.

20One may worry that the negative coe�cient on the spinach dummy is possibly also consistent with a
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The coe�cient on methyl bromide in the current period is signi�cant and negative,

which means there is a cost to methyl bromide that may yield future bene�t to either the

current crop or a future crop. The broccoli dummy coe�cient is negative, which, though not

signi�cant, suggests that planting broccoli is not as desirable as planting lettuce (since the

lettuce dummy has a signi�cant positive coe�cient) and requires foregoing current bene�ts

(or incurring current costs) for future gain. The coe�cient on the interaction term between

lettuce and broccoli history is signi�cant and positive, which suggests that planting broccoli

is an e�ective control option.

The lettuce dummy has a signi�cant positive coe�cient, which means that long-term

growers derive bene�ts from planting lettuce beyond its price, such as meeting shipper con-

tract requirements.21 Thus, it is desirable for growers to control V. wilt, since they bene�t

from planting lettuce.

The coe�cient on price at the time of harvest is negative. At �rst blush this may appear

counterintuitive, as economic theory predicts that price will have a positive e�ect on return.

After looking further into the data, however, the reason for this result becomes more clear.

Strawberries have a much higher revenue per acre than any of the vegetable crops included

in this data set, on the order of $70,000 for strawberries versus $20,000 or less for some

vegetable crops. Most growers concentrate on either strawberry crops or vegetable crops,

so there are very few cases in the data of growers switching to strawberries from vegetable

crops, even though this is what one would expect based on price alone. When strawberries

are removed as an action choice in the analysis, the coe�cient for price is then positive. In

addition, some strawberry growers are switching to contracts in which the price plays very

little role in determining their pro�t. They are paid a baseline amount for growing the crop

problem in modeling where the other crops with longer crop cycles would potentially be more appealing
than spinach. However, even when returns are divided by the length of season, the returns to spinach versus
other crops still follow the same order. This suggests that the season length is not the driving factor behind
this coe�cient. We con�rm in Carroll et al. (2017b) that the signi�cant negative coe�cient on the spinach
dummy is robust to whether we divide returns by season length.

21In the model, returns are estimated at the county level, so although contracts can and do specify prices,
we expect the return used in the model to be exogenous to contracting decisions.
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and may make more money in a particularly good year, but do not bear the downside risk

in a poor year.

The negative coe�cient on price at the time of harvest therefore suggests that there

may be something partially driving growers' decision-making that is not observable. For

example, growers may have connections and contracts that tie them to certain crops that

we cannot observe. They may have expertise or risk pro�les that better suit certain crops.

Perhaps some growers consider themselves vegetable growers and the cost of switching to

strawberries is too high. Uncertainty related to the future of methyl bromide and its lack of

suitable replacements for treating V. wilt could also play a role. Unobservable factors that

may make growers less likely to switch crops are at least partially captured in our model by

the last crop dummy. We hope to explore these issues further in future work.

The coe�cient on the last crop dummy is signi�cant and positive, which suggests that

growers are committed to previous crops, which is also consistent with the hypothesis that

growers do not switch crops often and therefore are less responsive to price.

The total average e�ects of the variables that appear in more than one term of the

per-period payo� function are reported at the bottom of Table 2. The spinach dummy has a

total average e�ect that is signi�cant and negative on net, which provides evidence that V.

wilt is a problem, even if the undesirability of spinach is mitigated by having methyl bromide

history and/or broccoli history.

The lettuce dummy has a signi�cant and positive total average e�ect, which means

that long-term growers derive bene�ts from planting lettuce beyond its price, and that the

bene�ts of lettuce are enhanced in the presence of control options such as methyl bromide

history and/or broccoli history.

Methyl bromide history has a positive total average e�ect, which, though not signif-

icant, suggests that methyl bromide may be an e�ective control option. Similarly, broccoli

history has a signi�cant and positive total average e�ect, suggesting that planting broccoli

is an e�ective control option.
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In using a marketing year average price for each crop to represent growers' expectations

about prices for each year, we assume that growers have rational expectations about the price.

Instead of rational expectations about price, another possible assumption is that growers'

best guess for this year's price is last year's price. The results are robust to whether we use

lagged prices rather than current prices (Carroll et al., 2017b).

We choose not to model the grower as only receiving the revenue for his crop the �rst

month of the harvest season, as this would not explain why growers may plant the same crop

for multiple months in the harvest season. Staying in the harvest season longer sometimes

yields higher revenue because it enables the grower to harvest more product or replant the

crop for more harvest, both of which are better captured by having the grower receive more

revenue if he stays in the harvest season longer. For similar reasons, we choose not to model

the grower as only receiving the revenue for his crop the last month of the harvest season.

As seen in Carroll et al. (2017b), we �nd that the results are robust to whether we divide

the marketing year average price for each crop by its average harvest season length, and

therefore to whether we assume growers who plant the same crop for multiple months in a

harvest season receive more revenue than those who plant that crop for only one month in

the harvest season.

We use our parameter estimates to calculate the normalized average welfare per grower

per month. The welfare is calculated as the present discounted value of the entire stream

of payo�s evaluated at the parameter values, summed over all long-term growers, then di-

vided by the number of grower-months. The average welfare per grower per month is then

normalized to 100.

The standard errors for the welfare values are calculated using the parameter estimates

from each of 100 bootstrap samples. For each of the 100 bootstrap samples, we calculate the

average welfare per grower per month using the parameter estimates from that bootstrap

sample, and normalize it. The standard error of the normalized welfare is the standard

deviation of the normalized welfare over all 100 bootstrap samples.
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The welfare results are presented at the bottom of Table 2.

5 Evaluating the Externality

We now consider the externality between spinach seed companies and lettuce growers. Seed

companies maximize pro�ts subject to international export and import regulations as well as

local seed testing and cleaning requirements. The seed companies impose an externality on

growers if they sell contaminated seed into the region. To analyze the externality between

spinach seed companies and lettuce growers, we introduce a representative seed company

who can choose whether and how much to test and clean spinach seeds to reduce the level

of microsclerotia.

For this paper, we de�ne integration as the incorporation of a seed company and one

or more growers. This is vertical integration because the seed companies supply inputs to

the growers. 22 Owing to asymmetric information, the price signal for tested and cleaned

seed versus contaminated seed is weak. Since cleaning seed is costly, pro�t-maximizing seed

companies will not clean or test seeds, resulting in an externality. In a perfect market,

price signals would be clearer, transaction costs lower, and contracting more complete, all of

which would eliminate the externality. However, as we described above, this is not currently

happening in Monterey County. To simulate the e�ects of internalizing this externality, we

adapt the methodology of Brewin et al. (2014).

Ideally, we would be able to use the pro�t and cost functions for seed companies to

estimate the model. Unfortunately, such data are proprietary and unavailable to us. As a

proxy, we estimate di�erent types of cost functions for seed cleaning based on discussions

with people in the industry.

The connection between growers and the seed company comes through the coe�cient θ1

on the spinach dummy in the per-period payo� in our dynamic structural model of growers'

22We defer considerations of horizontal integration and market power to future work.
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decisions. The spinach dummy coe�cient captures the e�ects of spinach on payo�s that are

not internalized in spinach price. We assume the seed company controls the spinach dummy

coe�cient, since its actions a�ect the contamination level of spinach seeds and therefore how

spinach a�ects microsclerotia, which in turn a�ects lettuce growers. The cleaner the spinach

seeds, the less negative the spinach dummy coe�cient, and the higher the bene�ts to the

grower. However, the seed company incurs costs in order to test and clean the spinach seeds

and make the spinach dummy coe�cient less negative. Since the seed company's choice of

spinach dummy coe�cient a�ects the grower's choices and payo�s, there is an externality

between seed companies and growers.

We use the estimated parameters from our dynamic structural model in Section 4 to

simulate how di�erent values of the spinach dummy coe�cient that the seed company can

choose will a�ect the choices and payo�s of growers. According to the results of the dynamic

structural model for growers in Table 2, the coe�cient θ1 on the spinach dummy in the owner

all parameters in -1.1311.

We consider the set of twenty-one evenly spaced values of the spinach dummy coe�cient

θ1 between -2.00 and 0.00. A spinach dummy coe�cient θ1 of -2.00 represents an even greater

negative e�ect from spinach seeds (and therefore microsclerotia) on grower payo�s. A spinach

dummy coe�cient θ1 equal to 0.00 implies that the e�ect of spinach on grower payo�s (aside

from price e�ects) is neutral and not economically signi�cant. In other words, the seed

company has tested and cleaned seed to the point where V. wilt is no longer an economically

damaging disease for lettuce.

For each possible value of the spinach dummy coe�cient θ1, we run 100 simulations

of the choices and payo�s that would arise if the spinach dummy coe�cient were equal that

values. For each of the 100 simulations, we calculate the average grower welfare per month,

which is the total welfare divided by the number of grower-months. Then, for each possible

value of the spinach dummy coe�cient, we average the grower welfare per month over the

100 simulations using that value of the spinach dummy coe�cient. We then calculate the
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average additional bene�ts to the grower for each value of the spinach dummy coe�cient

by subtracting the average grower welfare per month when the spinach dummy coe�cient

θ1 is -2.00 from the average grower welfare per month at that value of the spinach dummy

coe�cient. In other words, we normalize the average grower welfare per month when the

spinach dummy coe�cient θ1 is -2.00 to 0.

Standard errors are calculated using a nonparametric bootstrap. In particular, we

calculate the standard errors of the (additional) grower bene�ts using the parameter esti-

mates from each of twenty-�ve bootstrap samples. For each of the twenty-�ve bootstrap

samples, we run twenty-�ve simulations using the parameter estimates from that bootstrap

sample.23 The standard error of the (additional) grower bene�ts is the standard deviation

of the respective statistic over all twenty-�ve bootstrap samples.

Figure 5 plots the (additional) bene�ts to a grower per month, averaged over 100

simulations as a function of the coe�cient θ1 on the spinach dummy. As expected, the

additional bene�ts to the growers are the highest when the coe�cient on spinach is equal to

zero. As the coe�cient on spinach becomes more negative, the additional bene�ts to growers

decline.

For the seed company model, we need a measure of the cost that the seed company

incurs per unit change in the spinach dummy coe�cient θ1 per grower-month, i.e., how much

it costs the seed company to reduce microsclerotia by any given amount for one grower-

month. We spoke with several seed company representatives and others knowledgeable

about the spinach seed industry. Opinions varied regarding the functional form of the cost

function. Costs may increase exponentially (i.e., eliminating most of the microsclerotia is

relatively cheap, but cleaning all of the microsclerotia is very expensive or impossible). For

example, with hot water treatments, hotter water and longer exposure are more e�ective

23Constraints on computational time preclude us from running the twenty-�ve simulations per bootstrap
sample for more than twenty-�ve bootstrap samples per scenario. When we calculated the standard error
for welfare for scenario 1 using 100 bootstrap samples instead of twenty-�ve bootstrap samples, the value of
the standard errors were similar using both twenty-�ve bootstrap samples and 100 bootstrap samples.

27



for treating microsclerotia, but also increase the risk that seeds will not germinate (du Toit,

2005; Subbarao, personal communication, 2014). The functional form of the cost function

depends on a complicated set of factors.

Gerard Denny at Incotec stated that as a general statement about physical disinfection,

cost is relatively �at across di�erent levels of infestation. The process cost for chemical

treatment is also �at, but chemical treatment rates and regulation compliance may cause

increasing treatment costs. Mary Zischke of the California Leafy Greens Research Program

also mentions that up to 30% of spinach grown now is organic, which further complicates

seed treatment and cleaning.

Due to the potential di�erences in the functional form for the seed company costs, we

consider two di�erent models: an exponentially increasing cost function:

C(θ1) = c0(exp(c1θ1)− exp(−c12)), (4)

where c0 = {1, 2, 3} and c1 = {0.01, 0.03, 0.05}; and a log cost function:

C(θ1) = c2 log(c3(2 + θ1) + 1), (5)

where c2 = {1, 2, 3} and c3 = {0.03, 0.05, 0.07}.

The exponential cost function represents the idea that cleaning seeds partially may

be relatively cheap, but ensuring that they are entirely free of microsclerotia is extremely

costly to impossible. Hot water treatment e�ectively removes microsclerotia from the seed

coat, but may not remove microsclerotia from the interior of the seed, especially without

a�ecting germination rates. Likewise, for any chemical seed treatment, removing additional

microsclerotia would require a higher chemical concentration, thus increasing costs.

By contrast, the log function represents a case in which seed cleaning and testing costs

are relatively �at. If low levels of microsclerotia are not a concern, then cleaning seeds to an

acceptable level may be relatively inexpensive on the margin.
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For each of the two types of cost function, we run nine versions with di�erent parame-

ters for c0, c1, c2, and c3, respectively. For each, we simulate the model across the twenty-one

di�erent possible coe�cients on the spinach dummy variable. The cost to the seed company

is normalized to zero when the coe�cient is equal to -2.00, which represents seed that is even

more contaminated than the current status quo.

We estimate the spinach seed company's cost to testing and cleaning spinach seeds in

order to reduce the level of microsclerotia, and compare the spinach seed company's cost to

the grower's bene�ts. We use our estimates of the grower's bene�ts from and spinach seed

company's costs to testing and cleaning spinach seeds to determine the welfare-maximizing

level of seed testing and cleaning, where welfare is de�ned as the additional bene�ts to the

grower minus the costs to the seed company.

Figure 6 graphs the cost equations for the nine di�erent combinations of c0 and c1 for

the exponential cost function in Equation (4). Without detailed cost data from individual

seed companies, it is di�cult to conclude which cost estimates are most realistic. If seed

treatment costs are quite high, as is the case when c0 = 3 and c1 = 0.05, then costs always

exceed bene�ts and the seed company, even if vertically integrated with a set of growers,

has no incentive to clean seeds and would in fact be willing to sell seeds that are even more

contaminated than in the current status quo. In other cases, when the cost function slope is

less steep, bene�ts to the integrated �rm are highest when the spinach coe�cient is equal to

zero and microsclerotia are economically unimportant. If this is the case, high transaction

costs may be what is currently preventing an e�cient outcome.

Likewise, Figure 7 graphs the cost equations for the nine di�erent combinations of c2

and c3 for the log cost function in Equation (5). As in the previous �gure, if costs are more

realistically represented by the high cost functions shown here, then the status quo is an

e�cient equilibrium, unfortunately for lettuce growers. Otherwise, if seed cleaning is less

costly, these simulations show that it is possible for seed companies and growers to reach a

more economically optimal equilibrium, barring transaction costs.
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We compare the status quo, in which growers and seed companies are independent, to

a vertically integrated industry, in which one company produces spinach seeds, as well as

spinach, lettuce, and other crops. The vertically integrated industry would internalize the

externality between growers and seed companies, and would choose the welfare-maximizing

level of seed testing and cleaning.

For each type of cost function, we �nd the value of the coe�cient θ1 on the spinach

dummy (among the twenty-one possible evenly spaced values of the spinach dummy coe�-

cient θ1 between -2.00 and 0.00) that maximizes welfare, which we de�ne as the additional

bene�ts to growers minus cost to the seed company. The welfare-maximizing value of the

coe�cient θ1 on the spinach dummy is the socially optimal value of the coe�cient on the

spinach dummy, and re�ects the socially optimal amount of testing and cleaning by the seed

company if the externality is internalized.

The socially optimal value of the coe�cient on the spinach dummy, which re�ects the

socially optimal amount of testing and cleaning by the seed company if the externality is

internalized, represents the scenario in which a seed company and one or more growers are

integrated as one �rm. As one pro�t maximizing unit, the integrated �rm will choose a

set of actions (crop and fumigation decisions) as well as the spinach dummy parameter to

maximize welfare, de�ned as the additional bene�ts to growers minus the cost of testing and

cleaning seeds.

Tables 3 and 4 show the socially optimal value of the spinach coe�cient θ1, as well as

the (additional) bene�ts to growers, costs to the seed company, and welfare that arise under

the socially optimal value of the spinach coe�cient, for each set of cost parameters for the

two di�erent cost functions. In more than half of the cases, the socially optimal spinach

dummy coe�cient is greater than (i.e., less negative than) the actual coe�cient of -1.1311,

which means that the socially optimal amount of spinach seed testing and cleaning is more

than what arises when the externality is not internalized (the status quo).

In many cases, the socially optimal spinach dummy coe�cient is 0.00 and not signif-
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icant, which means that at the social optimum, after controlling for spinach price, planting

spinach should not have any signi�cant negative e�ect on grower payo�s. In these cases,

it is socially optimal for the seed company to test and clean spinach seeds so thoroughly

that planting spinach does not have any signi�cant negative e�ect on grower payo�s after

controlling for spinach price. When the socially optimal spinach dummy coe�cient is 0.00

and not signi�cant, welfare is signi�cant and positive, which means that testing and cleaning

spinach seeds this thoroughly not only maximizes welfare, but also that the welfare gains

acheived from doing so are signi�cant and positive.

Another case in which the socially optimal amount of spinach seed testing and clean-

ing is more than what arises under the status quo is when the socially optimum spinach

dummy coe�cient is -1.00 and signi�cant. In this case, both bene�ts and costs are signif-

icant and positive, but welfare is not signi�cant. Thus, even though a socially optimum

spinach dummy coe�cient of -1.00 requires more testing and cleaning than the status quo,

there is no signi�cant welfare gain.

In other cases, we �nd that vertical integration would not lead to more testing and

cleaning of seeds than arises in the status quo. When the socially optimal spinach dummy

coe�cient is signi�cant and requires less testing and cleaning than the status quo, welfare is

not signi�cant, which means that there is no signi�cant welfare gain in instances when the

social optimum requires less cleaning than the status quo.

Thus, we �nd that in more than half of the cases, the socially optimal amount of spinach

seed testing and cleaning is more than what arises when the externality is not internalized

(the status quo). Signi�cant welfare gains arise only when the seed company tests and cleans

the spinach seeds so thoroughly that planting spinach does not have any signi�cant negative

e�ect on grower payo�s after controlling for spinach price. In other cases, even though it

maximizes welfare, the socially optimal amount of spinach seed testing and cleaning does

not yield any welfare gains.

Between Tables 3 and 4, depending on the type of cost function and the parameters

31



of the cost function, there are two socially optimal coe�cients on the spinach dummy that

are greater than (i.e., less negative than) the actual coe�cient of -1.1311, meaning that the

socially optimal amount of spinach seed testing and cleaning is more than what arises when

the externality is not internalized (the status quo): 0.00 and -1.00. We use these two socially

optimal spinach dummy coe�cients to simulate the crop choices of long-term growers when

the spinach seed company engages in the socially optimal amount of spinach seed testing

and cleaning.

Standard errors and 95% con�dence intervals are calculated using a nonparametric

bootstrap. In particular, we calculate the standard errors of the simulation statistics (e.g.,

mean fraction of grower-months in each action) using the parameter estimates from each of

twenty-�ve bootstrap samples. For each of the twenty-�ve bootstrap samples, we run twenty-

�ve simulations using the parameter estimates from that bootstrap sample.24 The standard

error of the simulation statistics (e.g., mean fraction of grower-months in each action) is the

standard deviation of the respective statistic over all twenty-�ve bootstrap samples.

Figures 8-9 simulate growers crop choices for each of the two socially optimal spinach

dummy coe�cients that require more spinach seed testing and cleaning than the status quo.

The fraction of grower-months planted to lettuce is higher under the socially optimal spinach

dummy coe�cients of 0.00 and -1.00 than they are in the actual data in Figure 2. Thus, when

the spinach seed company internalizes the externality and engages in the socially optimal

amount of seed testing and cleaning, growers plant more lettuce, likely because V. wilt then

becomes less of a problem.

Figures 10-11 show the fraction of grower-months in each action type by month of

year. Compared to Figure 3, which shows the actual data, the simulations under the socially

optimal spinach dummy coe�cients of 0.00 and -1.00 show more grower-months planted to

24Constraints on computational time preclude us from running the twenty-�ve simulations per bootstrap
sample for more than twenty-�ve bootstrap samples per scenario. When we calculated the standard error
for welfare for scenario 1 using 100 bootstrap samples instead of twenty-�ve bootstrap samples, the value of
the standard errors were similar using both twenty-�ve bootstrap samples and 100 bootstrap samples.
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lettuce, especially in the last months of the year when the actual data consists more of

susceptible and other crops. Figures 12-13 show the fraction of grower months in each action

type by year. Compared to Figure 4, which shows the actual data, the simulations under

the socially optimal spinach dummy coe�cients of 0.00 and -1.00 show more grower-months

planted to lettuce and fewer grower-months planted to other crops. Thus, when the spinach

seed company internalizes the externality and engages in the socially optimal amount of seed

testing and cleaning, growers plant more lettuce, likely because V. wilt then becomes less of

a problem.

6 Conclusion

Due to V. wilt, a supply chain externality arises between companies selling spinach seed and

growers growing lettuce. Although testing or cleaning seeds may prevent Verticillium dahliae

from being introduced into a �eld, spinach seed companies may not have an incentive to test

or clean spinach seeds, as they do not internalize the costs that infected spinach seeds impose

on growers. In the absence of integration, seed companies and lettuce growers are unable

to achieve a potentially more e�cient equilibrium solution on their own, as contracting and

price signals do not adequately internalize the externality, and as growers lack bargaining

power in negotiating with seed companies.

In this paper, we analyze the externality between growers and seed companies. In our

model, the seed company controls the spinach dummy coe�cient, which captures the e�ects

of spinach on the grower's per-period payo�s that are not internalized in spinach price, since

the seed company's actions a�ect the contamination level of spinach seeds and therefore how

spinach a�ects microsclerotia, which in turn a�ects lettuce growers.

We calculate the bene�ts to growers from testing and cleaning spinach seed by simu-

lating growers' optimal decisions and welfare using di�erent values for the spinach dummy

coe�cient. As expected, we �nd that bene�ts to growers are the highest when the spinach
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dummy coe�cient is equal to zero (i.e., the seed company tests and cleans the spinach seeds

so thoroughly that planting spinach does not have any signi�cant negative e�ect on grower

payo�s after controlling for spinach price) and decrease as the spinach dummy coe�cient

increases in absolute value (i.e., as less testing and cleaning is done).

We then estimate the spinach seed company's cost to testing and cleaning spinach seeds

in order to reduce the level of microsclerotia, and compare the spinach seed company's cost

to the grower's bene�ts. Because seed cleaning cost data are not available, we use several

functional forms and parameters to estimate potential cost functions. We also determine the

welfare-maximizing level of seed testing and cleaning.

We compare the status quo, in which growers and seed companies are independent,

to a vertically integrated industry, in which one company produces spinach seeds, as well

as spinach, lettuce, and other crops. The vertically integrated industry would internalize

the supply chain externality between growers and seed companies, and would choose the

welfare-maximizing level of seed testing and cleaning.

We �nd that in more than half of the cases, the socially optimal amount of spinach

seed testing and cleaning is more than what arises when the externality is not internalized

(the status quo). Signi�cant welfare gains arise only when the seed company tests and cleans

the spinach seeds so thoroughly that planting spinach does not have any signi�cant negative

e�ect on grower payo�s after controlling for spinach price. In other cases, even though it

maximizes welfare, the socially optimal amount of spinach seed testing and cleaning does

not yield any welfare gains.

Thus, depending on the functional form and parameters used to estimate seed company

cost, the vertically integrated �rm may choose not to test and clean seeds at all, may partially

test and clean the seeds, or may test and clean seeds fully. In some cases, we �nd that vertical

integration would not lead to more testing and cleaning of seeds than arises in the status

quo. In most cases, however, vertical integration does lead to more testing and cleaning of

seeds.
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In the cases in which the social optimum would require more spinach seed testing and

cleaning than the status quo, when the spinach seed company internalizes the externality

and engages in the socially optimal amount of seed testing and cleaning, growers plant more

lettuce, likely because V. wilt then becomes less of a problem.

We �nd that a cooperative solution would increase welfare, and in most cases, a coop-

erative solution would require that the spinach seed company engage in more spinach seed

testing and cleaning than in the status quo. In particular, signi�cant welfare gains arise

only when the seed company tests and cleans the spinach seeds so thoroughly that planting

spinach does not have any signi�cant negative e�ect on grower payo�s after controlling for

spinach price. Determining who pays for cleaning and testing the seed, or for future advances

such as resistant varieties or replacement fumigants for methyl bromide, and determining

how to divide the joint surplus are still complicated issues, but, nevertheless, cooperation

among the di�erent players can increase social welfare.

Our work regarding the seed company and grower externality sheds light on how treat-

ment of spinach seeds could potentially reduce externalities between seed companies and

growers.
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Figure 1
Marketing year average prices per acre

Note: Black dashed lines delineate the bins used to discretize the marketing year average
price.
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Table 1
Summary statistics for state variables

Mean Std. Dev. Minimum Maximum
Spinach dummy 0.0285 0.1665 0 1
Methyl bromide today dummy 0.0033 0.0577 0 1
Broccoli dummy 0.0606 0.2385 0 1
Lettuce *Methyl bromide history 0.0229 0.1602 0 3
Lettuce *Broccoli history 1.1709 1.8277 0 12
Spinach *Methyl bromide history 0.0015 0.0431 0 2
Spinach *Broccoli history 0.0397 0.3701 0 10
Lettuce today dummy 0.6379 0.4806 0 1
Susceptible price*Susceptible harvest 5.0660 1.4914 0 6
Resistant price*Resistant harvest 1.8748 1.6125 0 4
Broccoli price*Broccoli harvest 1.1742 0.5082 0 2
Lettuce price*Lettuce harvest 1.9552 1.1004 0 4
Spinach price*Spinach harvest 2.5268 1.4709 0 4

Notes: Number of observations: 25,789. For each crop, the harvest month dummy variable
for that crop is equal to one in months during which that crop may be harvested, and zero
in months during which that crop is not harvested (i.e., winter months for most crops).
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Figure 2
Actual fraction of grower-months in each action
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Figure 3
Fraction of grower-months in each action type by month of year
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Figure 4
Actual fraction of grower-months for each action type by year
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Table 2
Results for long-term growers

(1)

Coe�cients in the per-period payo� function on:

Spinach dummy −1.1311∗∗∗
(0.2981)

Methyl bromide dummy −6.0705∗∗∗
(0.064)

Broccoli dummy −0.332
(0.2035)

Lettuce dummy*Methyl bromide history 0.2717
(0.4648)

Lettuce dummy*Broccoli history 0.3682∗∗∗

(0.0605)
Spinach dummy*Methyl bromide history 0.026

(0.1956)
Spinach dummy*Broccoli history 0.2643

(0.4769)
Lettuce dummy 1.4346∗∗∗

(0.1817)
Price*Harvest month dummy −0.1585∗∗∗

(0.0414)
Last crop dummy 21.2161∗∗∗

(1.0463)
Constant −1.1482∗∗∗

(0.3027)

Total average e�ects on per-period payo� of:

Spinach dummy −1.1206∗∗∗
(0.2987)

Lettuce dummy 1.4498∗∗∗

(0.1817)
Methyl bromide history 0.2378

(0.2968)
Broccoli history 0.2424∗∗∗

(0.0409)

Grower welfare (per grower-month) 100∗∗∗

(5.0957)
Number of observations 25,761

Notes: Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level,
∗∗ 1% level, ∗ 5% level, † 10% level.
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Figure 5
Normalized average per-month (per-period) additional bene�ts for a grower for di�ering
spinach dummy coe�cient values

Notes: Bene�ts are averaged over 100 simulations. Dotted blue lines indicate the 95%
con�dence interval, which is calculated using a nonparametric bootstrap.
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Figure 6
Exponential cost function and grower bene�ts: C(θ1) = c0(exp(c1θ1)− exp(−c12))

Notes: Bene�ts are averaged over 100 simulations. Dotted blue lines indicate the 95%
con�dence interval for bene�ts, which is calculated using a nonparametric bootstrap.
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Figure 7
Log cost function and grower bene�ts: C(θ1) = c2 log(c3(2 + θ1) + 1)

Notes: Bene�ts are averaged over 100 simulations. Dotted blue lines indicate the 95%
con�dence interval for bene�ts, which is calculated using a nonparametric bootstrap.
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Table 3
Optimal spinach dummy coe�cient: Exponential cost function C(θ1) = c0(exp(c1θ1)− exp(−c12))

c0 c1 Socially optimal coe�cient θ1 on spinach dummy Bene�ts Costs Welfare
1 0.01 0.00 0.1859∗∗∗ 0.0198∗∗∗ 0.1661∗∗∗

(0.5188) (0.0273) (0.0036) (0.0273)
1 0.03 0.00 0.1859∗∗∗ 0.0582∗∗∗ 0.1277∗∗∗

(0.5188) (0.0273) (0.0107) (0.0273)
1 0.05 0.00 0.1859∗∗∗ 0.0953∗∗∗ 0.0907∗∗∗

(0.5188) (0.0273) (0.0178) (0.0274)
2 0.01 0.00 0.1859∗∗∗ 0.0396∗∗∗ 0.1463∗∗∗

(0.5188) (0.0273) (0.0072) (0.0273)
2 0.03 0.00 0.1859∗∗∗ 0.1165∗∗∗ 0.0694∗

(0.5188) (0.0273) (0.0214) (0.0274)
2 0.05 -1.80∗∗∗ 0.0338 0.0182 0.0156

(0.162) (0.0278) (0.0911) (0.0274)
3 0.01 0.00 0.1859∗∗∗ 0.0594∗∗∗ 0.1265∗∗∗

(0.5188) (0.0273) (0.0107) (0.0273)
3 0.03 -1.00∗ 0.1029∗∗∗ 0.0860∗ 0.0168

(0.5188) (0.0273) (0.0438) (0.0274)
3 0.05 -1.80∗∗∗ 0.0338 0.0273 0.0065

(0.3697) (0.0278) (0.1366) (0.0274)

Notes: Standard errors in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level, † 10% level.
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Table 4
Optimal spinach dummy coe�cient: Log cost function C(θ1) = c2 log(c3(2 + θ1) + 1)

c2 c3 Socially optimal coe�cient θ1 on spinach dummy Bene�ts Costs Welfare
1 0.03 0.00 0.1859∗∗∗ 0.0583∗∗∗ 0.1276∗∗∗

(0.5188) (0.0273) (0.0035) (0.0273)
1 0.05 0.00 0.1859∗∗∗ 0.0953∗∗∗ 0.0906∗∗∗

(0.5188) (0.0273) (0.0102) (0.0274)
1 0.07 0.00 0.1859∗∗∗ 0.1310∗∗∗ 0.0549∗

(0.5188) (0.0273) (0.0164) (0.0274)
2 0.03 0.00 0.1859∗∗∗ 0.1165∗∗∗ 0.0694∗

(0.5188) (0.0273) (0.0070) (0.0274)
2 0.05 -1.80∗∗∗ 0.0338 0.0199 0.0139

(0.3162) (0.0278) (0.0554) (0.0274)
2 0.07 -1.80∗∗∗ 0.0338 0.0278 0.0059

(0.3697) (0.0278) (0.0904) (0.0274)
3 0.03 -1.80∗∗∗ 0.0338 0.0179 0.0158

(0.5188) (0.0278) (0.0283) (0.0274)
3 0.05 -1.80∗∗∗ 0.0338 0.0299 0.0039

(0.3697) (0.0278) (0.0831) (0.0274)
3 0.07 -2.00∗∗∗ 0.0000 0.0000 0.0000

(0.1414) (0.0275) (0.1345) (0.0274)

Notes: Standard errors in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level, † 10% level.
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Figure 8
Simulated mean fraction of grower-months in each action when spinach dummy coe�cient
θ1 equals 0

Notes: The fraction of grower-months in each action is averaged over 25 simulations. Er-
ror bars represent the 95% con�dence interval, which is calculated using a nonparametric
bootstrap.
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Figure 9
Simulated mean fraction of grower-months in each action when spinach dummy coe�cient
θ1 equals -1.00

Notes: The fraction of grower-months in each action is averaged over 25 simulations. Er-
ror bars represent the 95% con�dence interval, which is calculated using a nonparametric
bootstrap.
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Figure 10
Simulated fraction of grower-months in each action type by month of year when spinach
dummy coe�cient θ1 equals 0
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Notes: The fraction of grower-months in each action by month of year is averaged over 25
simulations. Error bars represent the 95% con�dence interval, which is calculated using a
nonparametric bootstrap.

55



Figure 11
Simulated fraction of grower-months in each action type by month of year when spinach
dummy coe�cient θ1 equals -1.00
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Notes: The fraction of grower-months in each action by month of year is averaged over 25
simulations. Error bars represent the 95% con�dence interval, which is calculated using a
nonparametric bootstrap.
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Figure 12
Simulated fraction of grower-months in each action type by year when spinach dummy
coe�cient θ1 equals 0
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Notes: The fraction of grower-months in each action by year is averaged over 25 simulations.
Error bars represent the 95% con�dence interval, which is calculated using a nonparametric
bootstrap.
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Figure 13
Simulated fraction of grower-months in each action type by year when spinach dummy
coe�cient θ1 equals -1.00
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Notes: The fraction of grower-months in each action by year is averaged over 25 simulations.
Error bars represent the 95% con�dence interval, which is calculated using a nonparametric
bootstrap.
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Late spinach �gure
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