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Abstract 
 Climate change has the potential to impact groundwater availability in several 

ways.  For example, it may cause farmers to change the crops they plant or the 
amount of water they apply, both of which have implications for water availability. 
Climate change can also affect water availability directly via changes in 
precipitation and evapotranspiration patterns.  In this paper, we review the literature 
on climate change, agriculture, and groundwater, including our research in Bertone 
Oehninger et al. (2016a,b) analyzing the effects of climate change on groundwater 
extraction for agriculture using an econometric model of a farmer’s irrigation water 
pumping decision that accounts for both the intensive margin (water use) and the 
extensive margins (crop acreage, whether to plant multiple crops, and irrigation 
technology).  Our results in Bertone Oehninger et al. (2016a) show that changes in 
climate variables influence crop acreage allocation decisions, the choice to plant 
multiple crops, the choice of irrigation technology, and the demand for water by 
farmers.  We find in Bertone Oehninger et al. (2016b) that such changes in behavior 
can affect the diversity of crops planted. 
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1. Introduction 
The management of groundwater resources is an issue that reaches far and wide; regions 

around the world are struggling with ways to reign in extraction from aquifers that have been 
deemed over-exploited, and many of the world's most productive agricultural basins depend 
almost exclusively on groundwater. The food that consumers eat, the farmers who produce that 
food, and the local economies supporting that production are all affected by the availability of 
groundwater (Lin Lawell, 2016b).  Worldwide, about 70 percent of groundwater withdrawn is 
used in agriculture, and in some countries, the percent of groundwater extracted for irrigation 
can be as high as 90 percent (National Groundwater Association, 2016).  Thus, any 
investigation into the economics of groundwater must consider the agricultural industry.  This 
paper focuses on the groundwater used for agriculture. 

Many of the world’s most productive agricultural basins depend on groundwater and 
have experienced declines in water table levels. Increasing competition for water from cities 
and environmental needs, as well as concerns about future climate variability and more frequent 
droughts, have caused policy makers to declare “water crises” and look for ways to decrease 
the consumptive use of water (Lin Lawell, 2016b). 

Climate change has the potential to impact groundwater availability in several ways.  
First, changes in climate may indirectly impact groundwater availability by causing changes in 
agricultural land use and changes in agricultural practices that then result in changes in water 
availability.  For example, climate change may cause farmers to change the crops they plant or 
the amount of water they apply, both of which have implications for water availability.  

Second, climate change may affect water availability directly.  For example, changing 
climates may result in melting snowcaps and/or changes in precipitation which would affect the 
availability of water for agriculture.   
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In this paper, we review the literature on climate change, agriculture, and groundwater, 
including our research in Bertone Oehninger et al. (2016a,b), which focuses on the groundwater 
used for agriculture in the High Plains (Ogallala) Aquifer system of the Midwestern United 
States.  The High Plains Aquifer provides a useful case study to generate general insights 
regarding agricultural groundwater and is also important in its own right, as 99 percent of the 
water extracted there is used for crop production, and the economy of the region is based almost 
entirely on irrigated agriculture (Lin and Pfeiffer, 2015).  The High Plains Aquifer is critical to 
the economic life of Kansas and the surrounding states, but water is being withdrawn from the 
aquifer much faster than it is being recharged.  Due to the importance of irrigated agriculture to 
the multi-state region, the imbalance in water use threatens long-term economic stability 
(Dermyer, 2011).  A better understanding of the effects of climate change on agriculture and 
groundwater in the High Plains Aquifer is therefore important for the sustainable management 
of agricultural groundwater both in that system and also more generally worldwide. 

In Bertone Oehninger et al. (2016a,b), we analyze the effects of climate change on 
groundwater extraction for agriculture using an econometric model of a farmer’s irrigation 
water pumping decision that accounts for both the intensive margin (water use) and the 
extensive margins (crop acreage, whether to plant multiple crops, and irrigation technology).  
Our results in Bertone Oehninger et al. (2016a) show that changes in climate variables influence 
crop acreage allocation decisions, the choice to plant multiple crops, the choice of irrigation 
technology, and the demand for water by farmers.  We find in Bertone Oehninger et al. (2016b) 
that such changes in behavior can affect the diversity of crops planted. 

The balance of our paper proceeds as follows.  Section 2 reviews the literature on climate 
change, agriculture, and groundwater.  Section 3 reviews our research in Bertone Oehninger et 
al. (2016a,b).  Section 4 concludes. 
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2. Literature Review 
2.1.  Effects of climate change on agriculture 

The literature analyzing the effects of climate change on agriculture includes a strand 
which examines the effects of climate change on farmland values and/or agricultural profits.  
Schlenker, Hanemann and Fisher (2006) link farmland values to climatic, soil, and 
socioeconomic variables for U.S. counties east of the 100th meridian, the historical boundary 
for agriculture not primarily dependent on irrigation.  Their estimated coefficients are consistent 
with the experimental results. They use their model to estimate the potential impacts on 
farmland values for a range of recent warming scenarios. The predictions are very robust: more 
than 75% of the counties in their sample show a statistically significant effect, ranging from 
moderate gains to large losses, with losses in the aggregate that can become quite large under 
scenarios involving sustained heavy use of fossil fuels (Schlenker, Hanemann and Fisher, 
2006). 

Deschênes and Greenstone (2007) measure the economic impact of climate change on 
U.S. agricultural land by estimating the effect of random year-to-year variation in temperature 
and precipitation on agricultural profits. Their preferred estimates indicate that climate change 
will increase annual profits by $1.3 billion in 2002 dollars, or 4 percent. This estimate is robust 
to numerous specification checks and is relatively precise, suggesting that large negative or 
positive effects are unlikely. The authors also find that the hedonic approach—which is the 
standard in the previous literature—is unreliable because it produces estimates that are 
extremely sensitive to seemingly minor choices about control variables, sample, and weighting 
(Deschênes and Greenstone, 2007). 

In contrast to Deschênes and Greenstone (2007), Fisher et al. (2012) find that the 
potential impact of climate change on U.S. agriculture is likely negative. Fisher et al. (2012) 
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attribute the different results in Deschênes and Greenstone (2007) to (1) missing and incorrect 
weather and climate data; (2) the use of older climate change projections rather than the more 
recent and less optimistic projections from the Fourth Assessment Report; and (3) difficulties 
in the profit measure due to the confounding effects of storage.  Deschênes and Greenstone 
(2012) acknowledge the coding and data errors in their 2007 paper that were uncovered by 
Fisher et al. (2012), and show how some of the other critiques may have little basis.  

Projecting the impacts of climate change on agriculture requires knowing or assuming 
how farmers will adapt. However, empirical estimates of the effectiveness of this private 
adaptation are scarce and the sensitivity of impact assessments to adaptation assumptions is not 
well understood. Moore and Lobell (2014) assess the potential effectiveness of private farmer 
adaptation in Europe by jointly estimating both short-run and long-run response functions using 
time-series and cross-sectional variation in subnational yield and profit data. The difference 
between the impacts of climate change projected using the short-run (limited adaptation) and 
long-run (substantial adaptation) response curves can be interpreted as the private adaptation 
potential. The authors find high adaptation potential for maize to future warming but large 
negative effects and only limited adaptation potential for wheat and barley. Overall, agricultural 
profits could increase slightly under climate change if farmers adapt but could decrease in many 
areas if there is no adaptation. Decomposing the variance in 2040 projected yields and farm 
profits using an ensemble of 13 climate model runs, they find that the rate at which farmers will 
adapt to rising temperatures is an important source of uncertainty (Moore and Lobell, 2014). 

Ricardian (hedonic) analyses of the impact of climate change on farmland values 
typically assume additively separable effects of temperature and precipitation with model 
estimation being implemented on data aggregated across counties or large regions.  Fezzi and 
Bateman (2015) use a large panel of farm-level data to investigate the potential bias induced by 
such approaches. Consistent with the literature on plant physiology, the authors observe 
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significant nonlinear interaction effects, with more abundant precipitation acting as a mitigating 
factor for increased heat stress. This interaction disappears when the same data are aggregated 
in the conventional manner, leading to predictions of climate change impacts that are 
significantly distorted (Fezzi and Bateman, 2015). 

Donaldson and Smith (2016) quantify the macro-level consequences of climate change. 
Using an extremely rich micro-level data set that contains information about the productivity—
both before and after climate change—of each of 10 crops for each of 1.7 million fields covering 
the surface of the earth, the authors find that the impact of climate change on these agricultural 
markets would amount to a 0.26 percent reduction in global GDP when trade and production 
patterns are allowed to adjust. Since the value of output in their 10 crops is equal to 1.8 percent 
of world GDP, this corresponds to about one-sixth of total crop value (Costinot, Donaldson and 
Smith, 2016). 

In addition to the above strand of literature examining the effects of climate change on 
farmland values and/or agricultural profits, the literature analyzing the effects of climate change 
on agriculture also includes a strand that examines the effects of climate change on crop yields 
and/or acreage.  Schlenker and Roberts (2009) pair a panel of county-level yields for corn, 
soybeans, and cotton with a new fine-scale weather dataset that incorporates the whole 
distribution of temperatures within each day and across all days in the growing season. They 
find that yields increase with temperature up to 29°C for corn, 30°C for soybeans, and 32°C for 
cotton, but that temperatures above these thresholds are very harmful. The slope of the decline 
above the optimum is significantly steeper than the incline below it. The same nonlinear and 
asymmetric relationship is found when the authors isolate either time-series or cross-sectional 
variations in temperatures and yields.  Holding current growing regions fixed, area-weighted 
average yields are predicted to decrease by 30-46% before the end of the century under the 
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slowest (B1) warming scenario and decrease by 63-82% under the most rapid warming scenario 
(A1FI) under the Hadley III model (Schlenker and Roberts, 2009). 

Using a state-of-the art dataset with very high spatial (14 km) and temporal (1h) 
resolution and a 31-year panel of corn yields covering 70% of U.S. production, Ortiz-Bobea 
(2015b) finds that corn yield is highly sensitive to soil moisture toward the middle of the season 
around flowering time. Models that omit soil moisture overestimate the detrimental effects of 
temperature. Thus, climate change impacts on agriculture are likely to be driven by both heat 
and drought stresses, and that their relative role can vary depending on the climate change 
scenario and farmer ability to adapt (Ortiz-Bobea, 2015b). 

According to Roberts, Schlenker and Eyer (2013), research from two alternative schools 
of thought find different projected impacts from climate change.  On the one hand, crop models 
that are based on plant physiology and developed and refined from field experiments over many 
decades usually predict modestly negative to positive impacts from projected warming and 
rising carbon dioxide concentrations, both globally and in the U.S.   On the other hand, results 
from statistical analyses provide evidence that most of the world’s key staple grains and 
legumes are critically sensitive to high temperatures in rain-fed environments (Roberts, 
Schlenker and Eyer, 2013). 

Recent reduced-form econometric models of climate change impacts on agriculture 
assume that climate is additive, and therefore that weather variables included as regressors can 
be aggregated over several months that include the growing season Ortiz-Bobea (2015a). Ortiz-
Bobea (2015a) develops a simple model to show how this assumption imposes implausible 
characteristics on the production technology that are in serious conflict with the agricultural 
sciences. He tests this assumption using a crop yield model of U.S. corn that accounts for 
variation in weather at various times of the growing season. Results strongly reject temporal 
additivity and suggests that weather shocks such as extreme temperatures are particularly 
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detrimental toward the middle of the season around flowering time, in agreement with the 
scientific literature on crop development and phenology. The additivity assumption tends to 
underestimate the range of adaptation possibilities available to farmers, thus overstating 
projected climate change impacts on the sector (Ortiz-Bobea, 2015a). 

Lee and Sumner (2015) establish quantitative relationships between the evolution of 
climate and cropland using daily climate data for a century and data on allocation of land across 
crops for six decades in a specific agro-climatic region of California. The authors use these 
relationships to project how climate scenarios reported by the Intergovernmental Panel on 
Climate Change would drive cropland patterns into 2050. Results show that projections of 
warmer winters, particularly from 2035 to 2050, cause lower wheat area and more alfalfa and 
tomato area. Only marginal changes in area are projected for tree and vine crops, in part because 
although they are lower, chill hours remain above critical values (Lee and Sumner, 2015). 

Miao, Khanna and Huang (2016) investigate the effect of crop price and climate 
variables on rainfed corn and soybean yields and acreage in the United States using a large 
panel dataset for the 1977–2007 period. Instrumental variables are used to control for 
endogeneity of prices in yield and acreage regressions, while allowing for spatially auto-
correlated errors. The authors find that an increase in corn price has a statistically significant 
positive impact on corn yield, but the effect of soybean price on soybean yields is not 
statistically significant. The estimated price elasticities of corn yield and acreage are 0.23 and 
0.45, respectively. Of the increase in corn supply caused by an increase in corn price, they find 
that 33.8% is due to price-induced yield enhancement and 66.2% is due to price-induced 
acreage expansion. They also find that the impact of climate change on corn production ranges 
from -7% to -41% and on soybean ranges from -8% to -45%, depending on the climate change 
scenarios, time horizon, and global climate models used to predict climate change. The authors 
show that the aggregate net impact of omitting price variables is an overestimation of the effect 
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of climate change on corn yield by up to 9% and on soybean yield by up to 15% (Miao, Khanna 
and Huang, 2016). 

Climate change shifts the distributions of a set of climatic variables, including 
temperature, precipitation, humidity, wind speed, sunshine duration, and evaporation. Zhang, 
Zhang and Chen (forthcoming) explore the importance of those additional climatic variables 
other than temperature and precipitation. Using county-level agricultural data from 1980 to 
2010 in China, the authors find that those additional climatic variables, especially humidity and 
wind speed, are critical for crop growth. Therefore, omitting those variables is likely to bias the 
predicted impacts of climate change on crop yields. In particular, omitting humidity tends to 
overpredict the cost of climate change on crop yields, while ignoring wind speed is likely to 
underpredict the effect. Their preferred specification indicates that climate change is likely to 
decrease the yields of rice, wheat, and corn in China by 36.25%, 18.26%, and 45.10%, 
respectively, by the end of this century (Zhang, Zhang and Chen, forthcoming). 

Scientists estimate that U.S. Corn Belt crop yields will increase or decrease, on average, 
and become more variable with climate change. Corn and soybean farming dominates this 
region, but studies typically do not assess the joint impact of new distributions of corn and 
soybean yields on markets. Thompson et al. (forthcoming) use a structural economic model 
with projections of climate-driven yield changes to simulate these effects. Their findings 
suggest that a narrow focus on a single crop in this key growing region risks underestimating 
the impact on price distributions and average crop receipts, and can lead to incorrect signs on 
estimated impacts (Thompson et al., forthcoming). 

Understanding the potential impacts of climate change on economic outcomes requires 
knowing how agents might adapt to a changing climate.  Burke and Emerick (2016) exploit 
large variation in recent temperature and precipitation trends to identify adaptation to climate 
change in U.S. agriculture, and use this information to generate new estimates of the potential 
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impact of future climate change on agricultural outcomes. Longer run adaptations appear to 
have mitigated less than half--and more likely none--of the large negative short-run impacts of 
extreme heat on productivity. Limited recent adaptation implies substantial losses under future 
climate change in the absence of countervailing investments (Burke and Emerick, 2016). 

Climate models predict more weather extremes in the coming decades. Weather shocks 
can directly reduce crop production, but their effect on food markets is partly buffered by 
storage and supply responses that can be complex and nuanced. Lybbert, Smith and Sumner 
(2014) explore how inter-hemispheric trade and supply responses can moderate the effects of 
weather shocks on global food supply by enabling potential intra-annual arbitrage. Their 
estimates of this effect in the case of wheat and soybeans suggest that it may be considerable: 
25–50% of crop production lost to a shock in the Southern Hemisphere is offset six months 
later by increased production in the North. These results have implications for the potential 
effects of climate change on global food markets, for how we model these interactions and, 
possibly, for the design of trade and production-related policies that aim to leverage this inter-
hemispheric buffer more effectively (Lybbert, Smith and Sumner, 2014). 

Olen, Wu, and Langpap (2016) use the 2007 Farm and Ranch Irrigation Survey database 
developed by the U.S. Department of Agriculture to assess the impact of water scarcity and 
climate on irrigation decisions for producers of specialty crops, wheat, and forage crops. They 
estimate an irrigation management model for major crops in the West Coast (California, Oregon 
and Washington), which includes a farm-level equation of irrigated share and crop-specific 
equations of technology adoption and water application rate (orchard/vineyard, vegetable, 
wheat, alfalfa, hay, and pasture). They find that economic and physical water scarcity, climate, 
and extreme weather, such as frost, extreme heat and drought, significantly impact producers’ 
irrigation decisions. Producers use sprinkler technologies or additional water applications to 
mitigate risk of crop damage from extreme weather. Water application rates are least responsive 
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to surface water cost or groundwater well depth for producers of orchard/vineyard. Water 
supply institutions influence producers’ irrigation decisions. Producers who receive water from 
federal agencies use higher water application rates and are less likely to adopt water-saving 
irrigation technologies for some crops. Institutional arrangements, including access to distinct 
water sources (surface or ground) and whether surface water cost is fee based, also affect the 
responsiveness of water application rates to changes in surface water cost (Olen, Wu and 
Langpap, 2016).  

Identifying the effect of climate on societies is central to understanding historical 
economic development, designing modern policies that react to climatic events, and managing 
future global climate change. Hsiang (2016) reviews, synthesizes, and interprets recent 
advances in methods used to measure effects of climate on social and economic outcomes. 
Because weather variation plays a large role in recent progress, the author formalizes the 
relationship between climate and weather from an econometric perspective and discusses their 
use as identifying variation, highlighting tradeoffs between key assumptions in different 
research designs and deriving conditions when weather variation exactly identifies the effects 
of climate. He then describes advances in recent years, such as parameterization of climate 
variables from a social perspective, nonlinear models with spatial and temporal displacement, 
characterizing uncertainty, measurement of adaptation, cross-study comparison, and use of 
empirical estimates to project the impact of future climate change. The paper concludes by 
discussing remaining methodological challenges (Hsiang, 2016). 

 
2.2.  Agricultural groundwater 

We also review the relevant economics literature on agricultural groundwater.  Using 
panel data from a period of water rate reform, Schoengold, Sunding and Moreno (2006) 
estimate the price elasticity of irrigation water demand. Price elasticity is decomposed into the 
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direct effect of water management and the indirect effect of water price on choice of output and 
irrigation technology. Their model is estimated using an instrumental variables strategy to 
account for the endogeneity of technology and output choices in the water demand equation. 
Their estimation results indicate that the price elasticity of agricultural water demand is 0.79, 
which is greater than that found in previous studies (Schoengold, Sunding and Moreno, 2006). 

Dermyer (2011) chooses seven target counties overlying the High Plains Aquifer to 
develop a method of predicting water-use based on land-use and weather records. A water 
budget model was created to predict irrigation withdrawals from the High Plains Aquifer based 
on crop-specific evapotranspiration, and the model was validated based on historic reported 
water-use, weather data, and land-use. In the seven target counties, predicted water use matched 
historic reported water use with a slope of 1.015. This model could be used to predict future 
irrigation demand under different land-use and climate conditions.  Additionally, the link 
between withdrawals and groundwater levels is examined for the seven target counties. In some 
counties, the change in water surface elevation was correlated with water-use, but in others, the 
amount of water withdrawn from the aquifer had no impact on the water table (Dermyer, 2011).  

Pfeiffer and Lin (2014a) analyze incentive-based groundwater conservation policies in 
Kansas and find that measures taken by the state of Kansas to subsidize a shift toward more 
efficient irrigation systems have not been effective in reducing groundwater extraction. The 
subsidized shift toward more efficient irrigation systems has in fact increased extraction through 
a shift in cropping patterns.  Better irrigation systems allow more water-intensive crops to be 
produced at a higher marginal profit. The farmer has an incentive to both increase irrigated 
acreage and produce more water-intensive crops (Lin, 2013a; Lin, 2013b; Lin, 2013d; Lin 
Lawell, 2016b; Lin and Pfeiffer, 2015; Pfeiffer and Lin, 2009; Pfeiffer and Lin, 2010; Pfeiffer 
and Lin, 2014a; Pfeiffer and Lin, 2014b; Sears et al., 2016).  
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Pfeiffer and Lin (2012) empirically examine whether the amount of water one farmer 
extracts depends on how much water his neighbor extracts.  Their econometric model is 
spatially explicit, taking advantage of detailed spatial data on groundwater pumping from the 
portion of western Kansas that overlies the High Plains Aquifer system.  Using an instrumental 
variable and spatial weight matrices to overcome estimation difficulties resulting from 
simultaneity and spatial correlation, they find that on average, the spatial externality causes 
over-extraction that accounts for about 2.5 percent of total pumping.  Kansas farmers would 
apply 2.5 percent less water in the absence of spatial externalities (Pfeiffer and Lin, 2012; 
Pfeiffer and Lin, 2015; Lin Lawell, 2016b; Sears et al., 2016). 

Lin Lawell (2016a) develops an empirical model to test whether groundwater users 
faced with the prior appropriation doctrine are behaving in a manner consistent with a dynamic 
model of nonrenewable resource extraction.  She finds that despite the incentives given to 
groundwater users to pump their maximum allowable amount in each year by the prior 
appropriation doctrine, farmers extract water consistent with a dynamic model of resource 
extraction. While producers are allotted a time-invariant maximum amount that they can extract 
each year, they still consider their remaining stock of water, pumping by nearby neighbors, and 
projections of future commodities prices when making crop choice and pumping decisions. Her 
results therefore provide evidence that farmers recognize the nonrenewable nature of the 
resource that they manage, even though their property rights do not (Lin Lawell, 2016a; Lin 
Lawell, 2016b).  

Li and Zhao (2016) study the role of imperfectly enforced water rights in restricting 
water use and limiting the rebound effects of LowEnergy Precise Application (LEPA) irrigation 
technology, as well as farmer incentives to preserve their water rights. Using data from the 
Ogallala-High Plains Aquifer region of Kansas, they find that restricting water rights can reduce 
water extraction even when ex post the water rights are not binding, and these effects are more 
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pronounced after the adoption of LEPA, thereby reducing the technology’s rebound effects of 
raising water extraction. The rebound effects arise from LEPA adopters switching to more water 
intensive crops as well as irrigating more intensively. Larger water right holders extract more 
water because they irrigate larger fields and also because they irrigate more intensively. Farmers 
have incentive to preserve their water rights in response to the use-it-or-lose-it clause of the 
water right system, but the associated water waste is insignificant.  

In some areas, agriculture that depends on irrigation from groundwater dominates both 
peak period energy use and the consumption of water. Energy is a key input for pumping water 
from aquifers. This linkage means that public policies and contract terms designed for either 
factor may affect the use of the other factor (Mieno and Brozovic, 2013).  Mieno and Brozovic 
(2013) look in particular at the effects on groundwater use of energy supply interruptions. They 
analyze the intra-seasonal irrigation decisions of individual agricultural producers facing 
stochastic energy supply interruption and rainfall using stochastic dynamic programming. The 
authors find that agricultural producers should increase the amount of water applied per 
irrigation opportunity to hedge against the risk of future energy outages. Further, numerical 
analysis calibrated to intensive irrigation in Nebraska, USA, where groundwater use is 
regulated, shows that random energy supply interruption could increase the total amount of 
water consumption despite reduced opportunities for irrigation. This finding indicates that 
energy supply interruptions could have adverse effects on groundwater use, potentially 
complicating the management of water resources. They also find that changes in the distribution 
of rainfall, as may accompany climate change, exacerbate the effects of energy supply 
interruptions on total groundwater consumption (Mieno and Brozovic, 2013). 

Pfeiffer and Lin (2014c) examine if energy prices impact groundwater extraction, and 
find that energy prices have an effect on both the intensive and extensive margins.  Increasing 
energy prices would affect crop selection decisions, crop acreage allocation decisions, and the 
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demand for water by farmers.  Their estimated total marginal effect, which sums the effects on 
the intensive and extensive margins, is that an increase in the energy price of $1 per million btu 
would decrease water extraction by an individual farmer by 5.89 acre-feet per year (Pfeiffer 
and Lin, 2014c; Sears et al., 2016). 

Increasing aridity, more frequent and intense drought, and greater degrees of water 
scarcity create unique challenges for agriculture. In response to these challenges, which often 
manifest themselves as lower and more variable surface water supplies, as well as depleted and 
degraded ground water supplies, growers tend to seek opportunities to adapt. One option for 
growers to reduce their exposure to water scarcity and heightened uncertainty is to diversify 
their water supply. Indeed, access to a portfolio of supplies is one way in which water and 
irrigation districts, as well as individual growers, are responding to the changing landscape of 
water resource availability.  Mukherjee and Schwabe (2015) evaluate the benefits to irrigated 
agriculture from having access to multiple sources of water. With farm-level information on 
1,900 agricultural parcels across California, they use the hedonic property value method to 
investigate the extent that growers benefit from having access to multiple sources of water (i.e., 
a water portfolio). Their results suggest that while lower quality waters, less reliable water, and 
less water all negatively impact agricultural land values, holding a water portfolio has a positive 
impact on land values through its role in mitigating the negative aspects of these factors and 
reducing the sensitivity of agriculture to climate-related factors. From a policy perspective, such 
results identify a valuable adaptation tool that irrigation districts may consider to help offset the 
negative impacts of climate change, drought, and population increases on water supply 
availability and reliability (Mukherjee and Schwabe, 2015).  
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3. A Review of Our Research 
Our research in Bertone Oehninger et al. (2016a,b) focuses on the groundwater used for 

agriculture in the High Plains (Ogallala) Aquifer system of the Midwestern United States. 
There, 99 percent of the water extracted is used for crop production; the remaining one percent 
is used for livestock, domestic, and industrial purposes. The economy of the region is based 
almost entirely on irrigated agriculture. The alfalfa, corn, sorghum, soybeans, and wheat grown 
there is used for local livestock production or exported from the region. The small local 
communities support the agricultural industry with farm implement dealers, schools, 
restaurants, and other services. The state governments are also greatly concerned with 
supporting their agricultural industry (Lin and Pfeiffer, 2015).   

Exploitation of the High Plains Aquifer system began in the late 1800s but was greatly 
intensified after the “Dust Bowl” decade of the 1930s (Miller and Appel, 1997). Aided by the 
development of high capacity pumps and center pivot systems, irrigated acreage went from 1 
million acres in 1960 to 3.1 million acres in 2005, and accounts for 99 percent of all 
groundwater withdrawals (Kenny and Hansen, 2004). Irrigation converted the region from the 
“Great American Desert” into the “Breadbasket of the World” (Lin and Pfeiffer, 2015). 

Increased access to the High Plains Aquifer increased agricultural land values and 
initially reduced the impact of droughts.  Over time, however, land use adjusted toward high-
value water-intensive crops and drought sensitivity increased (Hornbeck and Keskin, 2014).  
Similarly, measures taken by the state of Kansas to subsidize a shift toward more efficient 
irrigation systems led to perverse effect of increasing extraction through a shift in cropping 
patterns (Pfeiffer and Lin, 2014a; Lin and Pfeiffer, 2015).  

The High Plains Aquifer underlies approximately 174,000 square miles. It is the 
principle source of groundwater in the Great Plains region of the United States. Also known as 
the Ogallala Aquifer, the High Plains Aquifer system is now known to include several other 
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aquifer formations. The portion of the aquifer that underlies western Kansas, however, pertains 
mainly to the Ogallala Aquifer (Miller and Appel, 1997; Lin and Pfeiffer, 2015). 

The High Plains aquifer is underlain by rock of very low permeability that creates the 
base of the aquifer. The distance from this bedrock to the water table is a measure of the total 
water available and is known as the saturated thickness. The saturated thickness of the High 
Plains aquifer in Kansas ranges from nearly zero to over 300 feet (Buddemeier, 2000; Lin and 
Pfeiffer, 2015).   

The depth to water is the difference between the altitude of the land surface and the 
altitude of the water table.  In areas where surface and groundwater are hydrologically 
connected, the water table can be very near to the surface. In other areas, the water table is much 
deeper; the depth to water is over 400 feet below the surface in a portion of southwestern Kansas 
(Miller and Appel, 1997; Lin and Pfeiffer, 2015).  

Recharge to the Kansas portion of the High Plains aquifer is relatively small. It is 
primarily by percolation of precipitation and return flow from water applied as irrigation. The 
rates of recharge vary between 0.05 and 6 inches per year, with the greatest rates of recharge 
occurring where the land surface is covered by sand or other permeable material (Buddemeier, 
2000; Lin and Pfeiffer, 2015). 

The main crops grown in western Kansas are alfalfa, corn, sorghum, soybean, and wheat 
(High Plains Regional Climate Center, 2014).  Corn production accounts for more than 50 
percent of all irrigated land (Buddemeier, 2000). Soil types and access to high volumes of 
irrigation water determine the suitability of a particular piece of land to various crops (Lin and 
Pfeiffer, 2015). 

For our empirical analysis in Bertone Oehninger et al. (2016a,b), we have constructed a 
detailed panel data set of annual data for over 20,000 groundwater-irrigated fields in western 
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Kansas from 1996 to 2012 containing weather conditions, water use, irrigation type, crops 
planted, and soil moisture. 

We build on the data used in previous empirical analyses of groundwater in western 
Kansas (Pfeiffer and Lin, 2009; Pfeiffer and Lin, 2010; Pfeiffer and Lin, 2012; Pfeiffer and Lin, 
2014a; Pfeiffer and Lin, 2014b; Pfeiffer and Lin, 2014c; Lin and Pfeiffer, 2015; Lin Lawell, 
2016a; Lin Lawell, 2016b), which spanned 10 years between 1996 and 2005, and have extended 
the data set to cover the years 1996 to 2012.   In Bertone Oehninger et al. (2016a,b), we 
evaluate the effects of temperature, precipitation, and humidity on the behavior of farmers in 
that same region, over a longer period of time (17 years, from 1996 to 2012).  

To construct a detailed panel data set of annual data for over 20,000 groundwater-
irrigated fields in western Kansas from 1996 to 2012, we use data related to water rights, water 
use, and crop choice from the Water Information Management and Analysis System (WIMAS), 
which was created by the Kansas Department of Agriculture (Division of Water Resources and 
Kansas Geological Survey). Specific data related to wells’ characteristics (for example depth) 
was obtained from the Water Well Completion Records (WWC5) Database, also created by the 
Kansas Geological Survey.   

Weather data, including temperature, precipitation and humidity, was obtained from the 
High Plains Regional Climate Center (HPRCC), which contains information from the 
Automated Weather Data Network and also the National Weather Service & Cooperative 
Observer Network.  The furthest the closest weather station is to any field is 93.65 miles.  Thus, 
for each field, we average each weather variable over all the stations within 93.65 miles of that 
field. 

Following the work of Ortiz-Bobea (2015a,b), we control for soil moisture.  Soil 
moisture data was obtained from NASA’s NLDAS-2 (North American Land Data Assimilation 
System), the same source used by Ortiz-Bobea (2015a,b).   
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We obtained crop prices for sorghum and alfalfa from the USDA – ERS Feed Grains 
Database. Futures prices for corn, soybeans, wheat, feeder cattle, live cattle, live hogs and oats 
are from quandl.com. Energy prices are from the Energy Information Administration (EIA) for 
Kansas. 

In Bertone Oehninger et al. (2016a,b), we consider several specifications of the climate-
related variables.  These climate specifications are summarized in Table 1.  

In specification Y1, the climate variables are: annual average temperature, annual 
average temperature squared, total precipitation, total precipitation squared, and annual average 
humidity. 

In specification Y2, the climate variables are: average temperature over the last 3 years 
squared, average temperature over the last 3 years squared, total precipitation over the last 3 
years, total precipitation over the last 3 years squared, and annual average humidity.  

In specification Y3, the climate variables are: annual fraction of days with maximum 
temperature greater than 86 degrees Fahrenheit (°F),2 annual fraction of days with maximum 
temperature greater than 86°F squared, summer fraction of days with maximum temperature 
greater than 86°F, summer fraction of days with maximum temperature greater than 86°F 
squared, annual precipitation, annual precipitation squared, and annual average humidity. 

In specification Y4, the climate variables  are: average temperature over the last 3 years, 
average temperature over the last 3 years squared, total precipitation over the last 3 years, total 
precipitation over the last 3 years squared, annual average humidity, average temperature over 
the first 4 months of the year (before the crop decision), average temperature over the first 4 
months of the year (before the crop decision) squared, average precipitation over the first 4 
months of the year (before the crop decision), average precipitation over the first 4 months of 

                                                             
2 86 degrees Fahrenheit is equivalent to 30 degrees Celsius. 
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the year (before the crop decision) squared, and average humidity over the first 4 months of the 
year (before the crop decision). 

In specification Y5, the climate variables  are: average temperature over the last 3 years, 
average temperature over the last 3 years squared, total precipitation over the last 3 years, total 
precipitation over the last 3 years squared, annual average humidity, fraction of days with 
maximum temperature greater than 86°F over the first 4 months of the year (before the crop 
decision), fraction of days with maximum temperature greater than 86°F over the first 4 months 
of the year (before the crop decision) squared, average precipitation over the first 4 months of 
the year (before the crop decision), average precipitation over the first 4 months of the year 
(before the crop decision) squared, and average humidity over the first 4 months of the year 
(before the crop decision). 

In specification M1, the climate variables are: average monthly average temperature  
over last 3 years for each month of the year, average monthly average temperature over last 3 
years for each month of the year squared, average monthly precipitation over last 3 years for 
each month of the year, average monthly precipitation over last 3 years for each month of the 
year squared, and average monthly humidity over last 3 years for each month of the year. 

In specification M2, the climate variables are: average fraction of days (out of the days 
in that month with data) that have maximum temperature greater than 86°F over the last 3 years 
for each month of the year, average fraction of days (out of the days in that month with data) 
that have maximum temperature greater than 86°F over the last 3 years for each month of the 
year squared, average monthly precipitation over last 3 years for each month of the year, 
average monthly precipitation over last 3 years for each month of the year  squared, and average 
monthly humidity over last 3 years for each month of the year . 

Our econometric model of a farmer’s irrigation water pumping decision in Bertone 
Oehninger et al. (2016a) has two components: the extensive margins and the intensive margin.  
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We model three extensive margins: crop acreage, the choice to plant multiple crops, and 
irrigation technology.  For the crop acreage extensive margin, we estimate the farmer’s choice 
of how many acres to allocate to each crop using a censored regression model.  For the multiple 
crop extensive margin, we estimate the farmer’s choice of whether to plant multiple crops using 
a discrete response model.  For the irrigation technology extensive margin, we estimate the 
farmer’s choice of irrigation technology using discrete response models.  For the intensive 
margin, we estimate the farmer’s water demand conditional on his decisions regarding crop 
acreage allocation, whether to plant multiple crops, and irrigation technology.   

In addition to temperature, precipitation and humidity, we also control for other factors 
that may affect groundwater extraction, including depth to groundwater, precipitation, irrigation 
technology, saturated thickness, recharge, crop prices, and energy prices.  Following the work 
of Ortiz-Bobea (2015a,b), we also control for soil moisture. 

For the crop acreage extensive margin, we estimate the farmer’s choice of how many 
acres to allocate to each crop using a censored regression model.  In particular, for each crop 
(alfafa, corn, sorghum, soybeans, and wheat), we run a tobit regression of the acres allocated to 
that crop on the climate variables, controlling for alfafa price, corn price, sorghum price, 
soybeans price, wheat price, a dummy for using a center pivot irrigation system, a dummy for 
using a center pivot irrigation system with dropped nozzles, evapotranspiration, recharge, slope, 
a dummy for irrigated capability class=1, field size, depth to groundwater, natural gas price, 
diesel price, electricity price, saturated thickness, soil moisture, a dummy for whether alfafa 
was planted last year, a dummy for whether corn was planted last year, a dummy for whether 
sorghum was planted last year, a dummy for whether soybeans were planted last year, and a 
dummy for whether wheat was planted last year.   Table 2 presents the results of the tobit 
regressions for crop acreage for alfafa, corn, sorghum, soybeans, and wheat for climate 
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specification Y5, our preferred climate specification.  For robustness, we also run tobit 
regressions of crop acreage that include farmer random effects and year effects. 

For each of the 7 climate variable specifications, we run three sets of crop acreage 
regressions. In the first set (“all”), we use all observations, regardless of how many different 
types of crops were planted.  Here, we assume that the total acreage was equally divided among 
all crops planted on that field in that year.  In the second set (“monoculture”), we only use 
observations where only one crop type was planted on that field in that year.   In the third set 
(“polyculture”), we only use observations where more than one crop type was planted on that 
field in that year.   

For the multiple crop extensive margin, we estimate the farmer’s choice of whether to 
plant multiple crops using a discrete response model.  In particular, we run a probit regression 
in which the dependent variable is a dummy for planting more than one type of crop on that 
field in that year.  We regress this dummy the climate variables, controlling for alfafa price, 
corn price, sorghum price, soybeans price, wheat price, a dummy for using a center pivot 
irrigation system, a dummy for using a center pivot irrigation system with dropped nozzles, 
evapotranspiration, recharge, slope, a dummy for irrigated capability class=1, field size, depth 
to groundwater, natural gas price, diesel price, electricity price, saturated thickness, and soil 
moisture.  Table 3 presents the results of the multiple crop probit regression for climate 
specification Y5, our preferred climate specification. 

For the irrigation technology extensive margin, we estimate the farmer’s choice of 
irrigation technology using discrete response models.  In particular, we run a probit of center 
pivot sprinkler use on the climate variables, controlling for acres planted to alfalfa, acres planted 
to corn, acres planted to sorghum, acres planted to soybeans, acres planted to wheat, alfalfa 
price, corn price, sorghum price, soybeans price, wheat price, evapotranspiration, recharge, 
slope, a dummy for irrigated capability class=1, field size, depth to groundwater, natural gas 
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price, diesel price, electricity price, saturated thickness, and soil moisture.  Table 4a presents 
the results of the center pivot sprinkler use probit regression for climate specification Y5, our 
preferred climate specification.   

Similarly, we run a probit of center pivot sprinkler with drop nozzles use on the climate 
variables, controlling for acres planted to alfalfa, acres planted to corn, acres planted to 
sorghum, acres planted to soybeans, acres planted to wheat, alfalfa price, corn price, sorghum 
price, soybeans price, wheat price, evapotranspiration, recharge, slope, a dummy for irrigated 
capability class=1, field size, depth to groundwater, natural gas price, diesel price, electricity 
price, saturated thickness, and soil moisture.  Table 4b presents the results of the center pivot 
sprinkler with drop nozzle use probit regression for climate specification Y5, our preferred 
climate specification.   

For the intensive margin, we estimate the farmer’s water demand conditional on his 
decisions regarding crop acreage allocation, whether to plant multiple crops, and irrigation 
technology.  In particular, we run an OLS regression of water use on the climate variables, 
controlling for acres planted to alfafa, acres planted to alfafa squared, acres planted to corn, 
acres planted to corn squared, acres planted to sorghum, acres planted to sorghum squared, 
acres planted to soybeans, acres planted to soybean squared, acres planted to wheat, acres 
planted to wheat squared, a dummy for using a center pivot irrigation system, a dummy for 
using a center pivot irrigation system with dropped nozzles, evapotranspiration, recharge, slope, 
a dummy for irrigated capability class=1, field size, depth to groundwater, natural gas price, 
diesel price, electricity price, saturated thickness, and soil moisture.   Table 5 presents the results 
of the water use regression for climate specification Y5, our preferred climate specification.  
We also run another set of regressions using water intensity (in acre-feet of water per acre) 
instead of water use (in acre-feet) as the dependent variable.  For robustness, we also run water 
use and water intensity regressions that include farmer random effects and year effects. 
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We calculate the total marginal effects accounting for the extensive margins and 
intensive margin for each of the climate specifications in Bertone Oehninger et al. (2016a).  
According to our results in Bertone Oehninger et al. (2016a), annual average temperature and 
the average monthly average temperature over the past 3 years do not have a significant total 
marginal effect on water use, but the fraction of days with maximum temperature exceeding 
86°F has a significant positive total marginal effect on water use in the fall and possibly also in 
January-April and in the spring.   The average annual temperature over the last 3 years has a 
significant positive total marginal effect on water intensity.  Monthly temperature over the last 
3 years, and the monthly fraction of days with maximum temperature exceeding 86°F over the 
last 3 years can have a significant positive total marginal effect on water intensity in January-
April and in some months.  The sign of the total marginal effects of precipitation and humidity 
vary depending on the specification and/or month, and whether the effect is on water use or 
water intensity.   

Our results in Bertone Oehninger et al. (2016a,b) therefore show that changes in climate 
variables influence crop acreage allocation decisions, the choice to plant multiple crops, the 
choice of irrigation technology, and the demand for water by farmers.  We find that it is 
important to account for the extensive margins of whether to plant multiple crops and of the 
choice of irrigation technology in addition to the crop acreage extensive margin and the 
intensive margin.  We also find that it is important to evaluate the effects of climate-related 
variables by month rather than only at an annual level. 
 
4. Conclusion 

Climate change has the potential to impact groundwater availability in several ways.  
For example, it may cause farmers to change the crops they plant or the amount of water they 
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apply, both of which have implications for water availability. Climate change can also affect 
water availability directly via changes in precipitation and evapotranspiration patterns. 

In this paper, we review the literature on climate change, agriculture, and groundwater, 
including our research in Bertone Oehninger et al. (2016a,b) analyzing the effects of climate 
change on groundwater extraction for agriculture using an econometric model of a farmer’s 
irrigation water pumping decision that accounts for both the intensive margin (water use) and 
the extensive margins (crop acreage, whether to plant multiple crops, and irrigation 
technology).  Our results in Bertone Oehninger et al. (2016a) show that changes in climate 
variables influence crop acreage allocation decisions, the choice to plant multiple crops, the 
choice of irrigation technology, and the demand for water by farmers.  We find in Bertone 
Oehninger et al. (2016b) that such changes in behavior can affect the diversity of crops planted. 

Our research in in Bertone Oehninger et al. (2016a,b) provides a better understanding 
of how climate change affects groundwater extraction, crop choice, and irrigation technology 
decisions.  
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Table 1.  Climate Specifications  
  Y1 Y2 Y3 Y4 Y5 M1 M2 

Annual 

Average Temperature (°F)       
Total Precipitation (in)       
Average Humidity (%)       
Maximum Temperature (°F)       
Fraction of Days with Max Temp > 86°F       
Fraction of Days in Summer with Max Temp >86°F        
Average Temperature in Jan-Apr (°F)       
Total Precipitation in Jan-Apr (in)       
Average Humidity in Jan-Apr (%)       
Fraction of Days in Jan-Apr with Max Temp > 86°F       

3-Year 
Average 

Average Temperature (°F)       
Total Precipitation (in)       
Monthly Temperature (°F)       
Monthly Precipitation (in)       
Monthly Humidity (%)       
Monthly Fraction of Days with Max Temp > 86°F        
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Table 2: Crop Acreage Tobit Regressions, Climate Specification Y5  
 Dependent variable is acres planted to: 
 Alfalfa Corn Sorghum Soybeans Wheat 
 (1) (2) (3) (4) (5) 
Climate Variables           
Average temperature over the last 3 years (°F) 268.2*** -91.21*** 293.9*** 71.43* 96.27*** 
 (33.98) (14.49) (49.53) (27.97) (26.82) 
Average temperature over the last 3 years (°F) squared  -2.502*** 0.864*** -2.478*** -0.524* -0.868*** 
 (0.315) (0.134) (0.458) (0.259) (0.249) 
Total precipitation over the last 3 years (in) 0.401 1.968*** -0.884 2.353*** -0.331 
 (0.382) (0.186) (0.566) (0.402) (0.297) 
Total precipitation over the last 3 years (in) squared  -0.00258 -0.0133*** 0.000651 -0.0134*** 0.00101 
 (0.00310) (0.00148) (0.00451) (0.00314) (0.00239) 
Fraction of days in Jan-Apr with max temp >86°F 24.21 -3.398 -503.5* 310.9* 298.3* 
 (147.4) (69.87) (227.2) (146.8) (118.4) 
Fraction of days in Jan-Apr with max temp >86°F squared -595.1 -5,201** -3,592 -158.5 -8,520** 
 (3,540) (1,682) (5,385) (3,439) (2,867) 
Total precipitation in Jan-Apr (in) 0.482 17.57*** -36.66*** -4.702 -3.815 
 (5.703) (2.544) (8.158) (4.939) (4.591) 
Total precipitation in Jan-Apr (in) squared -2.615 -7.146*** 5.818 4.674* -4.168* 
 (2.417) (1.036) (3.270) (1.880) (1.985) 
Average humidity (%) 3.243*** 0.170 4.001*** -3.020*** 0.0237 
 (0.311) (0.149) (0.457) (0.302) (0.256) 
Average humidity in Jan-Apr (%) -0.492** -0.273*** -1.716*** 1.046*** -0.00127 
 (0.151) (0.0718) (0.230) (0.152) (0.120) 
      
Controls      
Alfalfa price ($/ton) 0.710*** 0.146** 0.00964 -0.755*** -0.115 
 (0.0935) (0.0460) (0.141) (0.0940) (0.0767) 
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Corn price (cents/bsh) -0.181*** 0.138*** -0.580*** -0.225*** -0.0429 
 (0.0471) (0.0222) (0.0672) (0.0440) (0.0384) 
Sorghum price ($/cwt) 2.749 -7.497*** 28.36*** 5.450* 3.882* 
 (2.083) (1.040) (3.134) (2.123) (1.751) 
Soybeans price (cents/bsh) -0.0717*** 0.0427*** -0.0423* 0.0856*** 0.0445*** 
 (0.0131) (0.00631) (0.0191) (0.0127) (0.0105) 
Wheat price (cents/bsh) 0.0471** -0.0626*** 0.0974*** 0.103*** -0.0527*** 
 (0.0166) (0.00784) (0.0239) (0.0155) (0.0133) 
Alfalfa was planted in previous year (dummy) 268.1*** -56.80*** -7.367** -41.01*** -8.196*** 
 (1.433) (0.975) (2.661) (2.345) (1.424) 
Corn was planted in previous year (dummy) -36.37*** 125.4*** -7.283*** 101.8*** 15.79*** 
 (1.096) (0.528) (1.495) (1.173) (0.793) 
Sorghum was planted in previous year (dummy) -20.05*** -3.355** 220.9*** 63.68*** 29.10*** 
 (2.256) (1.020) (2.287) (1.877) (1.349) 
Soybeans was planted in previous year (dummy) -22.94*** 65.50*** 45.97*** 113.3*** 27.93*** 
 (1.855) (0.705) (2.028) (1.274) (1.157) 
Wheat was planted in previous year (dummy) 3.227* -9.266*** 66.99*** 4.892*** 183.6*** 
 (1.333) (0.612) (1.685) (1.326) (0.959) 
Center pivot sprinkler (dummy) 7.886*** 21.62*** -26.26*** 17.55*** 6.980*** 
 (1.200) (0.597) (1.788) (1.240) (0.975) 
Center pivot with drop nozzles (dummy) 7.430*** 28.31*** -25.70*** 9.807*** 9.034*** 
 (1.766) (0.815) (2.445) (1.668) (1.321) 
Average evapotranspiration (in) 2.102** 2.274*** 2.921* 5.966*** -3.106*** 
 (0.806) (0.369) (1.167) (0.704) (0.637) 
Recharge (in) -2.169** -5.540*** -2.044* 13.67*** -9.135*** 
 (0.814) (0.320) (0.945) (0.522) (0.631) 
Slope (% of distance) 7.734*** -1.736*** 6.868*** -7.561*** -0.102 
 (0.512) (0.282) (0.846) (0.618) (0.463) 
Dummy for irrigated capability class=1 -18.43*** -12.84*** 12.39*** -4.965*** 2.179* 
 (1.616) (0.652) (1.884) (1.431) (0.999) 
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Field size (ac) 0.0662*** 0.142*** 0.125*** 0.00965 0.215*** 
 (0.00525) (0.00259) (0.00732) (0.00627) (0.00373) 
Depth to groundwater (ft) -0.0649*** 0.0732*** 0.0786*** -0.334*** 0.0376*** 
 (0.00968) (0.00493) (0.0150) (0.0120) (0.00759) 
Natural gas price ($/mcf) -2.916*** -3.727*** 4.059*** 8.432*** 0.472 
 (0.798) (0.385) (1.221) (0.757) (0.658) 
Diesel price ($/gal) -9.649* 7.989*** -30.01*** -37.84*** 2.826 
 (4.473) (2.153) (6.888) (4.282) (3.692) 
Electricity price (cents/kwh) 7.450*** -14.70*** 35.47*** 35.41*** -8.334*** 
 (2.191) (1.054) (3.365) (2.211) (1.769) 
Saturated thickness (ft) 0.0242*** 0.111*** -0.0754*** -0.0152** -0.00586 
 (0.00486) (0.00261) (0.00789) (0.00543) (0.00426) 
Soil moisture (kg/m2) -3.350*** 0.0943 2.242*** 0.943*** -0.0778 
 (0.128) (0.0703) (0.229) (0.148) (0.118) 
Constant -7,627*** 2,197*** -9,435*** -3,101*** -2,646*** 
 (929.7) (397.2) (1,356) (768.1) (733.0) 
Sigma 108.0*** 102.6*** 157.5*** 143.7*** 119.3*** 
 (0.552) (0.213) (1.183) (0.663) (0.472) 
      Observations 261,595 261,590 261,595 261,595 261,590 

Notes:  Standard errors are in parentheses.   Significance codes: * p<0.05, ** p<0.01, *** p<0.001. 
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Table 3: Multiple crop probit regression, Climate specification Y5 
Dependent variable is probability of planting multiple crops 

Climate variables   
Average temperature over the last 3 years (°F) 0.345*** 
 (0.0564) 
Average temperature over the last 3 years (°F) squared  -0.00321*** 
 (0.000524) 
Total precipitation over the last 3 years (in) -0.0104*** 
 (0.000680) 
Total precipitation over the last 3 years (in) squared  7.44e-05*** 
 (5.47e-06) 
Fraction of days in Jan-Apr with max temp >86°F 0.431 
 (0.263) 
Fraction of days in Jan-Apr with max temp >86°F squared 4.576 
 (6.156) 
Total precipitation in Jan-Apr (in) -0.0694*** 
 (0.00970) 
Total precipitation in Jan-Apr (in) squared 0.0251*** 
 (0.00392) 
Average humidity (%) -0.00264*** 
 (0.000513) 
Average humidity in Jan-Apr (%) 0.000502* 
 (0.000234) 
  
Controls  
Alfalfa price ($/ton) -0.000908*** 

 (0.000164) 
Corn price (cents/bsh) -5.07e-05 

 (7.56e-05) 
Sorghum price ($/cwt) 0.0127*** 

 (0.00274) 
Soybeans price (cents/bsh) 1.89e-05 

 (2.03e-05) 
Wheat price (cents/bsh) -7.43e-05* 

 (2.97e-05) 
Center pivot sprinkler (dummy) -0.126*** 
 (0.00219) 
Center pivot with drop nozzles (dummy) -0.141*** 
 (0.00301) 
Average evapotranspiration (in) -0.0110*** 

 (0.00136) 
Recharge (in) -0.00293* 

 (0.00116) 
Slope (% of distance) -0.0344*** 

 (0.00105) 
Dummy for irrigated capability class=1 0.0803*** 

 (0.00239) 
Field size (ac) 0.00154*** 

 (9.34e-06) 
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Depth to groundwater (ft) -7.86e-05*** 
 (1.85e-05) 

Natural gas price ($/mcf) 0.00780*** 
 (0.00143) 

Diesel price ($/gal) 0.0228** 
 (0.00785) 

Electricity price (cents/kwh) 0.00810* 
 (0.00399) 

Saturated thickness (ft) -0.000350*** 
 (9.53e-06) 

Soil moisture (kg/m2) 0.0103*** 
 (0.000260) 
  Observations 281,148 

 Notes:  Standard errors are in parentheses.   Significance codes: * p<0.05, ** p<0.01, 
*** p<0.001. 
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Table 4a: Center pivot sprinkler use probit regression, Climate 
specification Y5 

Dependent variable is probability of center pivot sprinkler use 
Climate variables   
Average temperature over the last 3 years (°F) 0.260*** 
 (0.0531) 
Average temperature over the last 3 years (°F) squared  -0.00227*** 
 (0.000491) 
Total precipitation over the last 3 years (in) -0.0225*** 
 (0.000625) 
Total precipitation over the last 3 years (in) squared  0.000106*** 
 (5.11e-06) 
Fraction of days in Jan-Apr with max temp >86°F -1.090*** 
 (0.229) 
Fraction of days in Jan-Apr with max temp >86°F squared 8.550 
 (5.400) 
Total precipitation in Jan-Apr (in) 0.0916*** 
 (0.00903) 
Total precipitation in Jan-Apr (in) squared 0.00679 
 (0.00346) 
Average humidity (%) -0.00443*** 
 (0.000464) 
Average humidity in Jan-Apr (%) 0.00993*** 
 (0.000211) 
  
Controls  
Acres planted to alfafa 0.000324*** 

 (2.11e-05) 
Acres planted to corn 0.000427*** 

 (1.13e-05) 
Acres planted to sorghum -0.000224*** 

 (3.37e-05) 
Acres planted to soy 0.000524*** 

 (2.33e-05) 
Acres planted to wheat 0.000165*** 

 (1.87e-05) 
Alfalfa price ($/ton) 0.00429*** 

 (0.000145) 
Corn price (cents/bsh) -0.00419*** 

 (6.64e-05) 
Sorghum price ($/cwt) 0.0170*** 

 (0.00244) 
Soybeans price (cents/bsh) 0.000810*** 

 (1.79e-05) 
Wheat price (cents/bsh) 0.000529*** 

 (2.69e-05) 
Average evapotranspiration (in) -0.00416** 

 (0.00128) 
Recharge (in) -0.00431*** 
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 (0.00110) 
Slope (% of distance) 0.0110*** 

 (0.000940) 
Dummy for irrigated capability class=1 -0.0518*** 

 (0.00225) 
Field size (ac) -0.000193*** 

 (9.37e-06) 
Depth to groundwater (ft) -0.000316*** 

 (1.70e-05) 
Natural gas price ($/mcf) -0.0159*** 

 (0.00130) 
Diesel price ($/gal) -0.111*** 

 (0.00718) 
Electricity price (cents/kwh) -0.0575*** 

 (0.00369) 
Saturated thickness (ft) -6.33e-05*** 

 (8.52e-06) 
Soil moisture (kg/m2) -0.00535*** 

 (0.000233) 
  

Observations 281,143 
Notes:  Standard errors are in parentheses.   Significance codes: * p<0.05, ** p<0.01, *** 
p<0.001. 
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Table 4b: Center pivot sprinkler with drop nozzles use probit 
regression, Climate specification Y5 

Dependent variable is probability of center pivot sprinkler with drop nozzle use 
Climate variables   
Average temperature over the last 3 years (°F) -0.205*** 
 (0.0452) 
Average temperature over the last 3 years (°F) squared  0.00180*** 
 (0.000420) 
Total precipitation over the last 3 years (in) 0.0106*** 
 (0.000724) 
Total precipitation over the last 3 years (in) squared  -8.24e-05*** 
 (5.51e-06) 
Fraction of days in Jan-Apr with max temp >86°F -1.725*** 
 (0.313) 
Fraction of days in Jan-Apr with max temp >86°F squared 14.92** 
 (5.026) 
Total precipitation in Jan-Apr (in) -0.0159 
 (0.0150) 
Total precipitation in Jan-Apr (in) squared -0.00424 
 (0.00702) 
Average humidity (%) -0.00497*** 
 (0.000474) 
Average humidity in Jan-Apr (%) 0.000292 
 (0.000403) 
  
Controls  
Acres planted to alfafa 0.000114*** 

 (1.59e-05) 
Acres planted to corn 0.000270*** 

 (7.86e-06) 
Acres planted to sorghum -0.000159*** 

 (2.39e-05) 
Acres planted to soy 0.000252*** 

 (1.63e-05) 
Acres planted to wheat 2.05e-05 

 (1.30e-05) 
Alfalfa price ($/ton) 0.0807*** 

 (0.00669) 
Corn price (cents/bsh) 0.0282*** 

 (0.00337) 
Sorghum price ($/cwt) -2.089*** 

 (0.00580) 
Soybeans price (cents/bsh) -0.00110 

 (0.00283) 
Wheat price (cents/bsh) 0.000686 

 (0.00136) 
Average evapotranspiration (in) -0.00548*** 

 (0.000829) 
Recharge (in) -0.00326*** 
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 (0.000761) 
Slope (% of distance) 0.00123 

 (0.000655) 
Dummy for irrigated capability class=1 -0.0214*** 

 (0.00151) 
Field size (ac) -9.73e-05*** 

 (5.97e-06) 
Depth to groundwater (ft) 0.000119*** 

 (1.18e-05) 
Natural gas price ($/mcf) 0.140 

 (0.131) 
Diesel price ($/gal) -0.668* 

 (0.286) 
Electricity price (cents/kwh) 0.116 

 (0.471) 
Saturated thickness (ft) -2.30e-06 

 (7.48e-06) 
Soil moisture (kg/m2) -0.00558*** 

 (0.000173) 
  
Observations 281,143 

Notes:  Standard errors are in parentheses.   Significance codes: * p<0.05, ** p<0.01, *** 
p<0.001. 
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Table 5: Water use regression, Climate specification Y5 
Dependent variable is water use (acre-feet) 

  
Climate variables   
Average temperature over the last 3 years (°F) 183.4*** 
 (10.72) 
Average temperature over the last 3 years (°F) squared  -1.574*** 
 (0.0993) 
Total precipitation over the last 3 years (in) -0.955*** 
 (0.124) 
Total precipitation over the last 3 years (in) squared  0.00898*** 
 (0.00100) 
Fraction of days in Jan-Apr with max temp >86°F 1,238*** 
 (45.24) 
Fraction of days in Jan-Apr with max temp >86°F squared -20,647*** 
 (993.2) 
Total precipitation in Jan-Apr (in) -58.30*** 
 (1.784) 
Total precipitation in Jan-Apr (in) squared 20.34*** 
 (0.735) 
Average humidity (%) 0.796*** 
 (0.0714) 
Average humidity in Jan-Apr (%) 0.335*** 
 (0.0327) 
  
Controls  
Acres planted to alfafa 0.528*** 

 (0.00867) 
Acres planted to alfafa squared -0.000342*** 

 (3.98e-05) 
Acres planted to corn 0.398*** 

 (0.00464) 
Acres planted to corn squared 0.000166*** 

 (1.73e-05) 
Acres planted to sorghum -0.0830*** 

 (0.0144) 
Acres planted to sorghum squared 0.000276*** 

 (7.91e-05) 
Acres planted to soy 0.328*** 

 (0.0115) 
Acres planted to soy squared -5.70e-05 

 (7.43e-05) 
Acres planted to wheat -0.0852*** 

 (0.00807) 
Acres planted to wheat squared 0.000342*** 

 (4.11e-05) 
Center pivot sprinkler (dummy) -0.801 

 (0.438) 
Center pivot with drop nozzles (dummy) 1.918*** 
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 (0.579) 
Average evapotranspiration (in) -0.216 

 (0.268) 
Recharge (in) -3.157*** 

 (0.230) 
Slope (% of distance) -1.038*** 

 (0.205) 
Dummy for irrigated capability class=1 -10.75*** 

 (0.480) 
Field size (ac) 0.423*** 

 (0.00207) 
Depth to groundwater (ft) 0.345*** 

 (0.00354) 
Natural gas price ($/mcf) -5.279*** 

 (0.172) 
Diesel price ($/gal) 9.278*** 

 (0.723) 
Electricity price (cents/kwh) 2.515*** 

 (0.609) 
Saturated thickness (ft) 0.148*** 

 (0.00189) 
Soil moisture (kg/m2) -3.279*** 

 (0.0510) 
Constant -5,234*** 

 (293.1) 
  Observations 281,143 

R-squared 0.492 
Notes:  Standard errors are in parentheses.   Significance codes: * p<0.05, ** p<0.01, *** 
p<0.001.  
 


