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Abstract 
 
 

Agriculture can be characterized as a system of multiple outputs in which some 
inputs generate greenhouse gases and thus attract attention from regulators. In 
particular, California’s cap-and-trade program for industrial emissions may 
someday expand to include greenhouse gases emitted by agriculture. To capture 
the key tradeoffs of such a policy, we develop an equilibrium displacement model 
with two agricultural outputs and two inputs: one with measurable greenhouse gas 
emissions and another with none. Our model enables us to analyze the effects of 
an emissions cap on input prices and quantities, output prices and quantities, the 
emissions intensity of production, and the output mix.   We use our model to 
simulate the agricultural sector as well as a two-sector offset program like the one 
currently being tested within the California cap-and-trade program. 
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1. Introduction 

In this paper we use an equilibrium displacement model of the agricultural sector to 

simulate climate change mitigation policy that places a cap on emissions-intensive practices. Our 

motivation is California’s new cap-and-trade program for greenhouse gas emissions, which 

regulates the largest sources of emissions — electrical utilities, large industrial facilities, and fuel 

distributors — and thus currently excludes agriculture. As the program matures and demand for 

abatement increases, the increasing costs of emissions reductions by existing covered entities 

may justify expansion of the program to new sectors.2  Even within a given sector, a climate 

change mitigation policy that places a cap on emissions-intensive practices may affect input 

prices and quantities, output prices and quantities, the emissions intensity of production, and the 

output mix within that sector. A better understanding of these effects is of interest not only to 

academics, but also to policy-makers and industry practitioners. 

 We look in particular at the agricultural sector in isolation to identify the intra-sectoral 

impacts of capping carbon dioxide emissions from the use of nitrogen fertilizer. Our equilibrium 

displacement model illustrates the resulting trading of emissions permits and changes in input 

and output mixes. Such an exercise with a simple model provides an important analytical 

background for other studies of the key complexities of actual policy which investigate 

                                                 

2 Murray et al. (2005) find that changes in agriculture, forestry and land use could potentially produce enough 
economically attractive greenhouse gas reductions (mitigation) to offset almost all of the emissions from the electric 
power sector – the nation’s largest source of emissions – with high but plausible economic incentive levels.  
However, without a change in policy, carbon markets are currently unlikely to be a driver of agricultural greenhouse 
gas mitigation (Murray, 2015). 
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additional types of agricultural emissions,3 the non-linearities of agroecological systems, as well 

as the interactions between agriculture and other sectors if they compete for the same emissions 

permits. 

In California climate change policy, the groundwork is already laid for incorporating 

some agricultural activities into cap-and-trade via offset programs, which allow industrial 

emitters to pay non-covered entities to fulfill their emissions reductions requirements.4 As a 

release valve for the main cap-and-trade program, agricultural offsets would place the 

agricultural sector in an ancillary role in climate change mitigation. Such an approach relieves 

regulators of the burden of identifying and computing the emissions from a diverse and dynamic 

set of agricultural practices and invites private organizations to monitor emissions abatement and 

mediate transactions. The exact same pattern of permits transfers would emerge under an offset 

program and full regulation if the costs of coordination between sectors is the same under both 

policies and if agriculture is more able to substitute low-emissions inputs for high-emissions 

inputs than industry is. Under these conditions, initiating an offset program is essentially the 

same as granting farmers initial emissions permits based on their current levels of greenhouse 

gas emissions and relying on the market to facilitate their trade with industrial sources whose 

initial allocations are insufficient to cover their current emissions levels. 

We therefore begin with the presumption that agricultural emissions are fully regulated. 

After exploring the underlying value of emissions reductions by different actors in the sector 

                                                 

3 Worldwide, the three main sources of agricultural emissions are carbon dioxide emissions from the use of nitrogen 
fertilizer, forgone carbon dioxide sequestration from the conversion of woody biomass to annual crops, and methane 
emissions from livestock (Suddick et al., 2011; Smith et al., 2013). 
4 Offsets generated through forestry, urban forestry, dairy digesters, and destruction of ozone-depleting substances 
programs are currently allowed for up to 8% of a facility’s compliance obligation (California ARB, 2015). 
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under this ideal scenario, we are then able to consider the implications of the current institutional 

environment in which agriculture is excluded altogether from cap-and-trade. Our methods are 

similar to Zhang’s (2014) study of the California dairy industry under cap-and-trade, which 

identifies the role of factor substitution among dairy products in transmitting the value of carbon 

pricing. However, we relax her assumption that the sector is a price-taker for the factors affected 

by carbon pricing, giving agriculture an active role in the markets for inputs. We are then able to 

identify the extent to which factor market linkages between industry and agriculture compromise 

the ability of a cap applied only to the industrial sector to reduce economy-wide greenhouse gas 

emissions. 

To capture the key tradeoffs of cap-and-trade, we develop a model of an agricultural 

system with multiple agricultural outputs and two inputs: one with measurable greenhouse gas 

emissions and another with none. We use this model to analyze the effects of an emissions cap 

on input prices and quantities, output prices and quantities, the emissions intensity of production, 

and the output mix.  Although there are multiple sources of emissions in agriculture, simplifying 

the system to two inputs offers a clear view of the mechanisms by which an emissions cap will 

alter both the emissions intensity of production and the output mix. Studying four common 

California crops, we find that cotton and alfalfa are the most sensitive to carbon pricing but in 

different ways and for different reasons. Cotton production decreases by much more than that of 

alfalfa and bears the brunt of the reduction in emissions. This is due to its initially high levels of 

emissions and its relatively high elasticity of substitution between emissions-intensive and other 

inputs. Alfalfa’s relatively large initial output share, steep output demand, and lack of flexibility 

between inputs put upward pressure on the emissions permit price.  
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We also use the model to simulate the effect of cap-and-trade on the relationship between 

agriculture and industry, using estimates of the elasticities of output demand, input supply, and 

input substitution for aggregate representations of each sector. We find a substantial difference in 

the implications for the industrial sector for different policy regimes. Factor market linkages with 

the agriculture sector mean that its exclusion from cap-and-trade necessitates a much more 

stringent cap and results in much higher permit prices for the industrial sector than would a 

unified policy achieving the same emissions reductions. 

We begin in Section 2 with a model of a single market—with only one demand curve and 

one supply curve—in order to describe the effect of a tax on output. This simple model requires 

as input parameters the price elasticities of demand and supply and the output price and quantity 

at the initial equilibrium. The purpose of starting with the simple model is twofold. First, treating 

supply as a single function, thus abstracting away from distinctions between the multiple inputs 

allows us to discuss functional forms in detail. We demonstrate how imposing functional forms 

yields predictions for output response to a tax and then use a differential logarithmic 

approximation to achieve similar results without such strict assumptions. The second reason for 

the simple model is that the single-market model offers two methods for simulating the 

equilibrium displacement: (1) shifters of supply and/or demand, or (2) a price wedge between the 

curves. Although the two methods generate equivalent results under a tax, it is easier to 

parameterize an input cap using the price-wedge approach.  Muth’s (1964) model with two 

inputs, which we will extend to multiple outputs, relies on shifting curves, making it necessary to 

develop an equivalent model with an input price wedge. Manipulations of the single-market 

model provide an expository basis for this work.  
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In Section 3, we frame Muth’s (1964) model in terms of two inputs—one responsible for 

emissions and one not—in order to simulate a tax on the emissions-intensive input. The input 

parameters needed for this model are the elasticity of demand, the elasticities of supply of each 

input, the elasticity of substitution between inputs as well as the output price, the output quantity, 

and the input cost shares at the initial equilibrium. We also assume a known, linear, rate of 

transformation from the emissions-intensive input to emissions, allowing the input tax to serve as 

a direct emissions tax. 

Given the two-input model, Section 4 replaces the tax with mandatory permits for the use 

of the emissions-intensive input and defines conditions under which permits would be traded. 

Section 5 extends the model to two outputs. 

Sections 2 and 3 build on extensions of Muth’s (1964) model by Alston, Norton, and 

Pardey’s (1995) and James (2001). Our contribution is to reframe the problem in terms of 

emissions taxes. Sections 4 and 5 are our own extensions.  A comparison of various Muth 

models and our contribution are presented in the Appendix. 

In Section 6, we discuss applications of our model and use our model to simulate the 

agricultural sector as well as a two-sector offset program like the one currently being tested 

within the California cap-and-trade program.  Section 7 concludes. 

 

2. Modeling an output tax in a simple (agricultural) production system 

We begin with a model of a single market—with only one demand curve and one supply 

curve—in order to describe the effect of a tax on output.   This simple model requires as input 

parameters the price elasticities of demand and supply and the output price and quantity at the 

initial equilibrium.  
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By focusing on supply and demand for the agricultural product and abstracting away 

from distinctions between the multiple inputs, we can derive the effect of a per-unit output tax t  

on the output price and quantity in several ways.   In particular, the single-market model offers 

two methods for simulating the equilibrium displacement: the wedge approach, which simulates 

a wedge between supply and demand; and the shifter approach, which shifts supply and/or 

demand. 

 

2.1 Wedge approach 

In the wedge approach, the total tax T  is measured as the vertical distance between 

inverse supply ( SP ) and inverse demand ( DP ), or ST P t  , which can be seen in Figure 1. 

The tax reduces the total quantity traded, increasing the price paid by consumers and decreasing 

the price received by producers.  We consider three versions of the wedge approach method 

below.  We demonstrate how imposing functional forms yields predictions for output response to 

a tax and then use a differential logarithmic approximation to achieve similar results without 

such strict assumptions.   

 

2.1.1 Linear 

In the first version of the wedge approach method for deriving the effect of a per-unit output tax 

t  on the output price and quantity, we assume that demand and supply are linear. Given price 

elasticities of demand and supply (  and , respectively) and initial equilibrium output quantity 

and price 0Q  and 0P ,  we can specify the functional forms of demand and supply without loss of 

generality as: 
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Demand: 0
0

1DQ Q P
P

      
 

Supply: 0
0

1SQ Q P
P

      
. 

 

In the presence of a tax, the market clears when: 

 1D SP P t  , 

which occurs when: 

 
0

1
SP P

t

 
 
 

    
 

and:  

 
   

0 01 ( 1)(1 )
1

1 1

t t
Q Q Q

t t

    
   

       
           

. 

Note that it is easy to see that this is satisfied at 0Q Q  when 0t  . 

 

2.1.2 Constant elasticity 

In the second version of the wedge approach method for deriving the effect of a per-unit output 

tax t  on the output price and quantity, we assume that demand and supply are constant elasticity 

functions, i.e. they are linear in natural logarithms: 

Demand:  0 0ln ln ln lnDQ Q P P    

Supply:  0 0ln ln ln lnSQ Q P P   . 

The market clears under the same conditions as before, i.e.  1D SP P t  . Translating this to 

logarithmic approximations yields: 
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 ln ln ln 1D SP P t   , 

resulting in the following  solution: 

 0 ln 1
ln D t

P P

 


 


, 

   0ln ln 1
ln

Q t
Q

  
 

  



. 

 

2.1.3 Logarithmic differential approximation  

In the third method of the wedge approach method for deriving the effect of a per-unit output tax 

t  on the output price and quantity, we remain agnostic about the functional forms of supply and 

demand and suppose they are locally linear in logarithms around the initial equilibrium. This 

approach is referred to as a “logarithmic differential approximation” (Alston, Norton, and 

Pardey, 1995). Here we take the convention that for any variable Z , ln
dZ

d Z
Z

 . In the case of 

demand and supply functions, where  Q  is a function of P  and   is the relevant elasticity: 

ln ln
Q P dP

d Q d P
P Q P


   


. 

Consequently, we have: 

Demand: ln ln Dd Q d P  

Supply: ln ln Sd Q d P . 

The market clearing condition is converted to a logarithmic approximation as follows: 

 1D SP P t   

   
 
1 1

       1

       

D S S

S S

S S

dP t dP P d t

t dP P dt

dP P

   

  

 

 

ln lnD Sd P d P t  . 



10 
 

The simplification in the fourth line results from the fact that at the initial equilibrium, 0t   and 

dt t . Note that in this approach, the functional forms are independent of the initial equilibrium 

 0 0,Q P . Solving for lnd Q , the resulting percentage change in output under a tax gives us 

ln
t

d Q

 




.  The system is solved as follows: 

1 0 ln 0 ln
1

1 0 ln 0 ln

0 1 1 ln ln

D D

S S

d Q d Q

d P d P t

d P t d P

 
 

 


         
                     
                  

. 

 

2.1.4 Results of wedge approach 

Table 1 presents the output resulting from the three versions of the wedge approach in 

response to three tax rates t: 1%, 10%, and 20%.  We set 0 1,000,000Q  , 0 100P  , 0.5   , 

and 2  . 

It is never possible to know the correct functional form. The linear approach, while 

straightforward in assumptions, is the most computationally burdensome. The logarithmic 

differential approximation approach is the easiest to compute and allows for an elegant extension 

to a production system with two inputs where computational burden is compounded. 

 

2.2 Shifter approach 

In addition to the wedge approach, a second approach for deriving the effect of a per-unit 

output tax t  on the output price and quantity is the shifter approach.  The simulation of a wedge 

between the supply and demand curves will yield the outcome as some equivalent shift of the 

curves. Suppose we shift demand down by a  and supply up by b , rewriting logarithmic demand 

and supply as:   
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Demand: ln lnD Dd Q d P    

Supply: ln lnS Sd Q d P   , 

with 
Q da

a Q
 
 


 and 
Q db

b Q
 
 


. Using the market clearing conditions D SQ Q  and 

D SP P , the solution can now be written: 

ln 1

ln 1 1

d Q

d P

  
 

     
          

. 

The solution is the same as the tax when we simulate a pure demand shift. Suppose that 0   

and define the price as that of the supply price when using the price wedge approach, i.e. SP P

. Now setting t   yields the same solution. 

 

2.3 Comparing the wedge approach and the shifter approach 

The simulation of a wedge between the supply and demand curves will yield the same 

outcome as some equivalent shift of the curves.  These two approaches are presented graphically 

in Figure 2, which reproduces Figure 1 in the left panel and simulates a downward shift of 

demand in the right panel. In the right panel, the shift of demand is equivalent to the magnitude 

of T  in the left panel: 0 0T P tP



  . The algebraic definition of the negative demand shift is 

found by observing that it equals the change in price plus the vertical movement along the 

original demand curve, which can be expressed in terms of the change in quantity and the 

elasticity of demand. From here, the equation for demand can be rewritten in terms of T  and 0P  

instead of   as follows: 
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 
0

0

0

0

slope of 

1
  

1
ln ln

ln ln

         ln

         ln .

DT dP dQ P

P
dP dQ

Q

T
d P d Q

P

T
d Q d P

P
d P t

d P





 

 
 

  

 
    

 

 
    

 

 

 
 

 

The advantage of the wedge approach is explicit measurement of the effect on both consumer 

and producer prices, with increase and decrease, respectively. By contrast, the shifter approach 

tracks only the price paid to producers, i.e. the height of the shifted demand curve.  

 

3. Modeling input taxes in an agricultural system with two inputs 

We now frame Muth’s (1964) model in terms of two inputs—one responsible for 

emissions and one not—in order to simulate a tax on the emissions-intensive input. We use the 

logarithmic differential approximation approach.  The parametric requirements of this model are 

elasticities of demand, supply of each input, and substitution between inputs as well as the input 

cost shares at the initial equilibrium. We also assume a known, constant, rate of transformation 

from the emissions-intensive input to emissions, allowing the input tax to serve as a direct 

emissions tax. 

We showed in the previous section that an output tax can be simulated either as a shift of 

demand or as a price wedge between the supply and demand curves. Muth (1964) and 

subsequent authors have used supply shifters to model equilibrium displacement under an input 
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tax, but in this section we demonstrate that an input tax can be equivalently simulated as an input 

price wedge. 

Name the inputs 1x  and 2x  with input prices 1w  and 2w , respectively, and suppose that 2x  

generates the externalities that will be regulated by the input tax. Suppose that we are given the 

elasticity of demand  ; the elasticities of supply 1  and 2  for each input, respectively; the 

elasticity of substitution   between inputs; and the input cost shares 1s  and 2s  at the initial 

equilibrium. Suppose further that there are constant returns to scale at the industry level and that 

markets are perfectly competitive. Assuming that all suppliers of a single input are 

homogeneous, we can imagine two representative suppliers and a single representative producer 

who sells to a single representative consumer.  

We simulate an input tax  2t  on input 2 by a shift in supply for input 2. The vertical 

magnitude of the shift can be expressed as 02
2

2

w



 for an initial input price 0
2w , with 2 0   for an 

upward shift of supply. This approach is equivalent to an input price tax of 2
2

2

t



  , resulting in 

a wedge of magnitude 0 02
2 2 2 2

2

T t w w



   . The price wedge (or, equivalently, the shift of input 

2 supply) is demonstrated in the first panel of Figure 3.  Both the supply shift and the price 

wedge approach follow the same steps from here: if the inputs are complements, supply of input 

1 decreases, but if they are substitutes it increases. Either way, production decreases, more so if 

the inputs are complements. 

As in the model of demand shifts above, the algebraic definition of the supply shift is 

measured as the change in price plus the vertical movement along the original curve, which can 
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be expressed in terms of the change in quantity and the elasticity of supply. From here, the 

equation for demand can be rewritten in terms of either 2T  and 0
2w  or 2 , as follows: 

 2 2 2 2

0
2

2 2 0
2 2

2
2 20

2 2

2
2 2 2 2 0

2

2 2 2

   slope of 

1
        

1
   ln ln

ln ln

          ln .

ST dw dx w

w
dw dx

x

T
d w d x

w

T
d x d w

w

d w





 

 

  

 
   

 

 
   

 

 

 

 

 

The model can be summarized by six equations for consumer demand, production, two 

input demands and two input supplies. Table 2 represents these equations as well as their 

logarithmic differential versions for both the wedge and the shifter approaches. The wedge 

approach was adapted from the approach of Muth (1964) and Alston, Norton, and Pardey (1995) 

by removing the supply shifter 2  from the input supply function and adding the tax into the 

relevant market clearing condition: 2 2 2ln lnD Sd w d w t  . 

The problem can be reduced to a set of seven equations with seven unknowns if we plug 

in all the market clearing conditions except for the one for input 2. We use 2ln Sd w  in the wedge 

approach to signify that the relevant market clearing condition (with the input tax) has already 

been integrated, while 2lnd w  is sufficient for the shifter approach since 

2 2 2ln ln lnD Sd w d w d w  . Let IIM  be a matrix given by: 
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1 2

2 2

1 1

1

2

1 0 0 0 0 0

1 0 0 0 0

0 1 1 0 0

0 1 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1 1

II

s s

s s

M s s



 

 




 
   
 

  
 

    
 

 
 
 

  

, 

 

where 1s  and 2s  are input cost shares given by: 

1 1
1

2 2
2

S

S

w x
s

pQ

w x
s

pQ




. 

The problem is then solved in matrix form as: 

 

 

 

 

2 2 2 1

2 2 2 1

2 2 1 2

1 1
2 2 1

2 2

1 1

2 2

2 2 2

ln 0 ln

ln 0 ln

ln 0 ln

ln 0 ln

ln 0 ln

ln 0 ln

ln ln

II

II

II

II

S S

D D

t s

D

t s

D
d Q d Q

t s
d P d P

D
d x d x

t
M d x d x

d w d w

d w d w

d w t d w

   

  

   

  





           
     
     

            
     
     
     
          

 

 

 

 

2 1

2 2 2

2 1 2 1 1

2 2 1 1 2

II

II

II

II

s s

D

t s

D

t s s

D

t s s

D

 

  

    

   

 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
  
 
 
   
    
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using the wedge approach and: 

 

 

 

 

2 2 1

2 2 1

2 1 2

1 1
2 1 2

2 2

1 1

2 22

2 2

ln ln0

ln ln0

ln ln0

ln ln0

ln ln0

ln ln

ln ln0

II

II

II

II

S S

D D

s

D

s

D
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using the shifter approach, where    1 2 1 1 2 2 2 1 1 2IID s s s s              .  

The equivalence of the wedge and the shifter approaches is evident by comparing the 

solutions. For the quantities of the output and both inputs, the price of input 1, and the supply 

price of input 2, the shifter approach yields 2

2 2t




  times the solutions of the wedge approach. 

This implies that the solutions are equal when 2
2

2

t



  . The demand price of input 2 is identical 

to the supply price under the shifter approach, but the magnitude of the wedge is reflected in the 

difference between the two under the wedge approach.  
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We can now interpret the results. In particular, combining the results from the wedge 

approach gives us expressions for the change in revenue for each of the producers as well as the 

market as a whole, which are presented in Table 3.  Under the non-controversial assumptions 

that 1 2 1 2, , , , 0s s     , a sufficient (but not necessary) condition for the revenue to the supplier 

of input 2 to go down in response to the input tax is that both inputs 1 and 2 are gross substitutes 

(   ) and final demand is elastic ( 1   ). Revenue to suppliers of input 1 goes up when 

inputs are gross substitutes and down when they are gross complements (   ). Gross revenue 

goes down when final demand is inelastic ( 1   ). 

The elasticity of the supply   for the final agricultural product can be found by 

introducing a demand shift into the equilibrium displacement model and computing the ratio of 

the logarithmic change in quantity to the logarithmic change in price. The output demand 

equation in the model presented above is modified to include a shifter a :  

( , )DQ f P a , 

with:  

Q da

a Q
 
 


, 

so that: 

ln lnDd Q d P   . 

Consequently, under our modeling assumptions, the elasticity of the supply   for the final 

agricultural product is given by the following equation: 

 
2

1 2 1 1 2 2

0 2 1 1 2

ln

ln t

s sd Q

d P s s

    


  

 
 

 
   .                                    (1) 
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In specifications (2)-(4) and (6)-(8) of Table 4 we present results of simulations of the 

two-input, single output model with a 10% tax on input 2 for various parameter values. We set 

the input cost shares equal for all simulations, i.e. 1 2 0.5s s  . Additionally, we set 1 2 2   . 

Specifications (1) and (5) report the results from an analogous 10% output tax when demand is 

inelastic and elastic, respectively, using the simple model from the previous section that does not 

distinguish between different inputs. Specification (1) is the same simulation as the simulation of 

the logarithmic differential approximation when t=0.1 in Table 1.    

Because the elasticity of the supply   for the final agricultural product is independent of 

the value of the elasticity of substitution   between inputs and the relative magnitudes of 1s  and 

2s  when 1 2  ,5 adjusting the value of   is equivalent to perturbing one or both of the input-

specific elasticities of supply 1  and 2  away from 2 or the input shares 1s  and 2s  away from 

0.5. For this reason, adjusting the values of   and   is sufficient for demonstrating the 

sensitivity of the model to all exogenous changes and we maintain 1 2 2    and 1 2 0.5s s   

in all the simulations that follow.  

For all parameter values, a tax on input 2 results in smaller effects on the price and 

quantity of the final good than a tax on the final good in the simple model. In fact, for these 

parameter values, the input tax results contracts output by exactly half the magnitude as the 

output tax. This is because as long as there is some degree of substitutability between inputs, 

production can adjust to use the input made relatively cheaper by the tax on input 2. 
                                                 

5 When 1 2    , 
   

 
1 2 1 1 2 2 1 2

2 1 1 2 2 1

s s s s

s s s s

          
      
    

   
    

. 
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In specifications (2) and (7), in which      (i.e. inputs are neither gross substitutes 

nor gross complements), input 2 bears the full brunt of the tax. In specifications (3), (4), and (8), 

the inputs are gross substitutes, since    . Consequently, both the quantity and the (demand) 

price of input 1 increase in response to the tax on input 2. Specification (6), when demand is 

elastic and the inputs are gross complements, is the only simulation in which use of inputs 1 is 

reduced, though input 2 is more affected.  

The final five rows of Table 4 present the percentage change in gross revenue in the 

output market, denoted by  ln Dd P Q  before output taxes are paid and  ln Sd P Q  afterwards; 

the percentage change in revenue to suppliers of input 1, denoted by  1 1lnd w x ; and the 

percentage change in revenue to suppliers of input 2 before and after paying their input tax bill, 

denoted by  2 2ln Dd w x  and  2 2ln Sd w x , respectively. The change in revenue to suppliers of 

input 2 is more drastic for larger values of elasticity of substitution and more elastic demand; i.e. 

they are more sensitive to the input tax when production allows greater substitution toward the 

other input or when consumers can substitute consumption away from the final output.6  

It is instructive to compare specifications (3) and (6), which use opposite values of the 

elasticity of substitution   between inputs and the elasticity of demand  . The stronger effect 

on output quantity and weaker effect on output price are due to greater elastic demand, regardless 

of the value of  , decreasing the change in gross revenue in the output market. For opposite 

values of   and  , the change in gross revenue is positive when     (i.e. when inputs are 

                                                 

6 Note that the difference in pre- and post-tax revenues to suppliers of input 2 is 10%, the size of the input tax. 
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gross substitutes) and negative when     (i.e. when inputs are gross complements). The 

other results are the same between these two columns, except that when inputs are gross 

complements, 1lnd w . 1lnd x , and  1 1lnd w x  are negative, whereas in the opposite case they are 

positive. 

 

4. Replacing an input tax with input cap 

Given the two-input model, we now replace the tax with mandatory permits for the use of 

the emissions-intensive input and define conditions under which permits would be traded. In 

particular, suppose now that instead of an input tax, a cap on the allowable quantity of input 2 

were instituted. The results can be modified for this case by treating 2lnd x  as the mandatory 

percentage change reduction in total use of input 2 to satisfy an exogenous cap. The solution is 

based on the results from above, defining define the endogenous permit price *
2t  as a function of 

the parameters and the exogenous cap on the percentage change of input 2 2lnd x :  

 
 

2 2 1 1 2 * 2
2 2

2 1 2 1

ln
ln II

II

t s s D d x
d x t

D s s

    
    

      
   

. 

In this scenario, *
2t  represents the shadow value of a permit, or the representative producer’s 

willingness to pay for permits at an auction. If we consider the representative producer to be an 

aggregation of multiple producers that are identical except for receiving unequal grandfathered 

allocations, *
2t  is the trading price.   

The system gets interesting when there is heterogeneity among producers. In this case, 

equal initial allocations will inspire trading up to the point where the marginal benefit of using 

input 2 (which will vary across producers for a given output level) equals *
2 2t w . Within the 
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model, we can imagine two types of heterogeneity. First, still supposing there is only one output, 

producers of the output may differ in their production functions; for example some may use 

fertilizer more intensively than others and thus generate more greenhouse gas emissions per unit 

of output. Expressing output in supply functions in logarithmic differential approximation form, 

this difference would be captured in the parameters ijs , the baseline expenditure on input i by 

producer j  as a share of j ’s total revenue. In the case of two producers, the system would need 

to be rewritten with two production functions (one for each producer), two input demand 

functions for each input, and input supply functions which sum over the quantities of each input 

supplied to the two producers.  

A second way to introduce heterogeneity is to allow for multiple outputs, each produced 

by a different producer. In this case, there will be demand and supply functions for each output 

and an input demand function that sums over the individual demands of all the producers. When 

written in logarithmic differential approximation form, the production functions and individual 

input demand functions utilize the input cost shares 1 js  and 2 js  as defined above except that j  

designates distinct outputs. This second type of heterogeneity is a more general case of the first 

type, in which a single output that is produced using multiple methods could be modeled with 

distinct production functions and a single demand function. 

 

5. An agricultural system with two outputs and two inputs 

Generalizing the equilibrium displacement model to an agricultural system with multiple 

outputs is necessary for policy analysis. Here we present the steps for extending to two-input 

model to a system with two outputs ,j A B , each with quantity jQ , price jP , elasticity of 
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demand j , cost shares 1 js  and 2 js , elasticities of substitution j  between inputs, and input 

demand for each of the two inputs. Total input supply used in the model is the sum of the given 

input supplied to producers of each output.  

In order to specify input supply in logarithmic differential form, we need to incorporate 

shares of each input i  supplied to each producer j , 
S
ij

S
i

x

x
, which makes the problem non-linear. 

To avoid this non-linearity, we have plugged in baseline input shares, ijr , which specifies initial 

levels of input i  going toward output j . In other words, 
,0

,0 ,0

S
ij

ij S S
iA iB

x
r

x x



.  

 

5.1 Input tax 

Table 5 presents the system of equations for the two-input, two-output model when there 

is an input tax  2t  on emissions-intensive input 2. This system can be written in matrix form as 

follows: 

 



23 
 

1

1

1

2

2

2

1

2

2 2

ln 0

ln 0

ln 0

ln 0

ln 0

ln 0

ln 0

ln 0

ln 0

ln 0

ln 0

ln 0

ln

A

B

A

B

A

III B

A

B

S

D

d Q

d Q

d P

d P

d x

d x

M d x

d x

d x

d x

d w

d w

d w t

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

, 

 

with 

1 2

1 2

1 1

2 2

2 2

2 2

1 1

1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0

A

B

A A

B B

A B

A A

A A

B B

B BIII

A B

A A

A A

B B

B B

s s

s s

r r

s s

s s
M

r r

s s

s s




 

 

 

 




 
 



 

 


 

 

1

2

1

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
  

. 

 

 



24 
 

An analytical solution is derived in Matlab, similar to the single output case results in 

Table 3, and computed for a 10% input tax and various parameter values in Table 6. Because the 

algebraic expressions are long and unintuitive, they are not reported here but are available upon 

request. 

Several features of these results are noteworthy. First, comparing specification (4) to 

specification (1), it is clear that if the two outputs are identical in terms of their elasticities of 

demand and substitution, then the impact of the tax is the same as it is in the one-output case. 

Second, specifications (4) and (6) demonstrate that when the elasticities of demand are 

equivalent for the two products, the effect on output and total demand for each input will be the 

same for both products, even if differences in the elasticity of substitution (specification (6)) 

affect the input demands for the two outputs differently. Finally, the two output prices go up by 

the same amount in each simulation (though this magnitude varies by simulation) even when 

there are differences in demand for the two outputs (specification (5)). This is a consequence of 

the fixed proportions of the inputs going toward the two outputs, as the model does not allow the 

increased price of input 2 to lead to specialization in use of input 2 by the output producer that is 

more reliant on it. 

 

5.2 Input cap 

Now we are finally in a position to simulate a cap on emissions-intensive input 2. Minor 

modifications of the model are as follows, where *
2t  is an endogenous variable and measures the 

value of the tradable permit under the exogenous cap 2lnd x , which is in turn measured in terms 

of the percentage change from some baseline. Note that the permit price is defined in the same 

units as a percentage tax on input use and its value is added to the input supply price to compute 
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the percentage change in the full input demand price faced by producers subject to the cap. The 

model is solved as follows: 
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Tables 7 and 8 present the results when 2lnd x  is -0.062857 (i.e. the input cap is set at 

93.7143% of the initial level), which is the level of reduction in input 2 predicted under a 10% 

input tax when the elasticities of substitution between inputs are given by 1.5A B    and the 

elasticities of demand are given by .5A B     (see Table 6). When these elasticities are used 

with the cap, the outcomes are all the same as the tax. Results with different elasticities are 

presented as well. 

Specifications (1) and (2) of Table 7 demonstrate the equivalence of a 10% tax on input 2 

and an approximately 6% mandatory reduction of input 2. As with a tax, an input cap reduces the 

emissions intensity of both outputs (both 2ln Ad x  and 2ln Bd x  are negative). Specifications (3) 

and (4) are qualitatively similar to specifications (5) and (6) from Table 6 (the results with the 
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input tax), as the parameter values are identical. The difference in magnitudes is indicates that 

the cap has less (more) impact than the 10% tax in specification (3) (specification 4), which is 

summarized by the endogenous permit price of 8.250% (10.666%). Compared to a baseline in 

Table 7 specification (2), increasing the demand elasticity of output A in specification (3) results 

in stronger contraction in the production of output A, which shows up in an even smaller quantity 

produced, a reduction in the quantity of input 1 used, a disproportionate share of the total 

reductions in the quantity of input 2 for output A. Gross revenues for output A decrease instead 

of increase. When elasticity of demand for output A is restored to the level of that for output B 

but the elasticity of substitution is relatively higher in the production of output A (specification 

(4)), output A continues to bear most of the burden of the reductions of input 2 but compensates 

by increasing use of input 1. The gross revenues for both outputs increase, and do so at a higher 

magnitude than when the elasticity of substitution between inputs for output A was lower. 

Table 8 reproduces these three scenarios under two alternative sets of parameters for the 

initial input shares in order to consider the effects of the cap on output mix: specifications (1)-(3) 

keep equal shares for output B but specify higher shares of input 2 in the production of output A 

while specifications (4)-(6) specify high shares of input 2 in the production of output B (with 

equal shares for output A). In short, output A is more emissions-intensive in specifications (1)-

(3) and output B is more emissions-intensive in specifications (4)-(6). When the elasticities of 

demand and substitution are the same for the two outputs, the equivalence of specifications (1) 

and (4) demonstrates that the input shares have no effect on any of the prices and quantities and 

thus on the output mix. When the elasticity of demand differs between the two outputs (as in 

specifications (2) and (5)), Table 7 demonstrated that the input cap shifts the output mix toward 

the one with more inelastic demand. This effect is weakened when the output with the higher 
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elasticity of demand is more emissions-intensive. Comparing specification (3) of Table 7 with 

specifications (2) and (5) of Table 8 demonstrates that when output A has a higher demand 

elasticity, increasing output A’s share of the emissions-intensive input results in weaker 

contractions in both outputs, an effect that is reversed when output B becomes the relatively 

emissions-intensive output. Restoring equal demand elasticities assigning a higher elasticity of 

substitution to output A in specifications (3) and (6) of Table 8 results in positive gross revenues 

for both outputs. In comparison to the case of equal input shares and equal elasticities of 

substitution, output B’s low elasticity of substitution results in a lower magnitude of gross 

revenue increases for both outputs when output A is more emissions intensive (comparing Table 

8 specification (2) and Table 7 specification (4) to Table 7 specification (2)). 

Table 9 considers the situation when output A is relatively elastic under the same initial 

input shares as Table 8. Specifications (2) and (5) are identical to those in Table 8. Under all 

these scenarios, production of output A contracts more than that of output B, but this is stronger 

the higher the elasticity of substitution for output A (comparing specification (3) to specification 

(1), as well as comparing specification (6) to specification (4)). Also, the higher the elasticity of 

substitution of output A, the stronger its reductions in emissions, as seen in output A’s increased 

use of input 1 and decreased use of input 2 in specifications (3) and (6) (compared to the other 

cases).  

 

6. Applications  

In this section we discuss applications of our model and use our model to simulate the 

agricultural sector as well as a two-sector offset program like the one currently being tested 

within the California cap-and-trade program.   
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6.1 Single-output model 

The single output model with a representative producer allows us to see the direct impact 

of an increase in the opportunity cost of an emissions-intensive input, whether it is caused by an 

input tax or a cap on the input level. The single output model could be applied to any production 

process with a clean input and a dirty input.   

While electricity generation, industrial emissions sources, and the transportation sector 

are currently included in the California cap-and-trade program, agriculture, responsible for 8% of 

greenhouse gas emissions, represents the next frontier (California ARB, 2014). Within the 

agriculture sector, soil amendments of synthetic nitrogen fertilizer are the third largest source of 

greenhouse gas emissions in both California and the world, after emissions from livestock, and 

are expected to move to second place as developing countries adopt more fertilizer use (Suddick 

et al., 2011; Smith et al., 2013). The use of synthetic nitrogen fertilizer is a primary source of 

nitrous oxide emissions, which could be reduced through adjustments in the quantity and type of 

nitrogen fertilizer or other changes in management practices including conservation tillage, cover 

cropping, residue management strategies, biochar additions, and improved irrigation systems 

(Suddick et al., 2011).  

The main application of the single output model that we will focus on is therefore the 

application to agriculture.  We focus on reductions of nitrogen fertilizer use here, supposing that 

the emissions-intensive input 2 is nitrogen fertilizer and assuming that all nitrogen fertilizer 

generates a constant per-unit level of greenhouse gas emissions. This assumption is unrealistic 
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but allows us to treat an emissions cap as a fertilizer cap, a first step in a more comprehensive 

study of emissions mitigation mechanisms.7 We suppose further that the remaining inputs (e.g., 

water, seeds, labor, and capital) are used in fixed proportions to each other, allowing them to be 

aggregated into a single input 1, and that the elasticity of substitution of the nitrogen fertilizer for 

the aggregate input 1 is inversely related to the share of total input costs allocated to water.8 In 

other words, we assume that there are fewer opportunities for substitutability among inputs in the 

production of water-intensive crops.  Using these assumptions and empirical estimates of 

elasticity of supply of agricultural outputs, it is possible to estimate the elasticity of supply of the 

aggregate input 1 (as defined here) based on equation (1). Assumed and computed elasticities are 

reported in Table 10 for four California crops: alfalfa, cotton, rice, and processing tomatoes 

based on the work of Russo, Green, and Howitt (2008). Note that because the composition of 

aggregate input 1 is assumed to vary by crop, so too do the elasticities of supply for input 1. 

We apply our parameter assumptions to our single-output model to simulate the effects of 

an emissions cap on emissions intensity of output; output mix; permit price; change in output; 

change in the two inputs; change in revenue; and change in gross revenue for alfafa, corn, rice, 

and processing tomatoes, respectively.  The results of simulations based on these parameters are 

reported in Table 11. Comparing the results for different outputs within the single-output model 

gives us an idea of how each would be affected if it were the only crop competing for inputs 1 

                                                 

7 Adding multiple fertilizer types with different emissions levels would enhance realism but make the results 
difficult to interpret. It would also require precise assumptions about the substitutability between fertilizer types. 
8 We make the simple functional form assumption that ln(cost share of water)   . 
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and 2 and the only crop affected by the input cap, an unrealistic scenario that is nonetheless 

useful for illustrating the underlying dynamics.  

Of the four crops simulated, the output price increase is smallest for cotton, which is also 

the crop with the lowest increase in use of input 1 to offset decreasing use of input 2. Output 

revenue increases for all crops, but the percentage increase is smallest for cotton. Cotton also 

demonstrates the smallest endogenous permit price. The relatively low competition for input 2 in 

the production of cotton can be explained by cotton’s relatively high elasticity of demand, which 

corresponds to significant reductions in production, and the moderately high elasticity of 

substitution between inputs. Alfalfa, by contrast, has a low elasticity of substitution between 

inputs, giving it the highest permit price along with relatively small increases in input 1 prices 

and quantities. Rice experiences the strongest increase in the price of input 1 as well as final 

output price, reflecting the high elasticity of substitution among inputs, which makes input 1 

more desirable, as well as more inelastic output demand, which allows input costs to be passed 

on to consumers. The effect of the input cap on processing tomatoes is unremarkable compared 

to these more extreme cases, with estimates of most variables lying between those of rice and 

alfalfa; this is not surprising because the elasticities and cost shares for processing tomatoes lie 

between those of rice and alfalfa.  

In addition to agriculture, the single output model could also be applied to any production 

process with a clean input and a dirty input, such as electricity generation using both renewable 

energy and fossil fuels. Electricity generation is responsible for 21% of the greenhouse gas 

emissions in the state of California (California ARB 2014). Industrial sources, including 

petroleum refining, oil and gas extraction, manufacturing, on-site combined heat and power 

(CHP) generation, and landfills, are responsible for another 22%. The single output model could 
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also be used in a short-run analysis of an industry using both purchased and CHP-generated 

electricity, assuming fixed emissions levels for each source. CHP is known to generate much 

lower emissions than conventional electricity generation (US EPA, 2014) but would have a 

higher elasticity of supply since it relies on other processes underway at the site. The 

transportation sector, which is responsible for 37% of statewide greenhouse gas emissions 

(California ARB, 2014) could also be modeled within the single-output model, simplifying 

transportation mode choice to electric vehicles and standard combustion engines.  

 

6.2 Two-output model on intra-sectoral dynamics  

Our basic single output model is insufficient for studying permit trading between 

producers of different outputs; the endogenous permit price predicted by the model is merely the 

representative producer’s shadow value of a permit under the assumption that only that 

representative producer demands each of the inputs. We developed the two-output model to 

reveal the dynamics between heterogeneous producers. Among the four crops for which we have 

estimates of elasticities, cotton and alfalfa are both well-suited to four of the same California 

counties in the San Joaquin Valley (Fresno, Kern, Merced, and Tulare), suggesting that land may 

easily be shifted from one to the other in response to changes in relative input prices (CFDA, 

2014). Available data on production practices for these crops in the San Joaquin Valley from 

University of California Cooperative Extension Cost and Return Studies (2015) are reported in 

Tables 12 and 13.  

We apply our parameter assumptions to our two-output model to simulate the effects of 

an emissions cap on emissions intensity of output and output mix, permit price, change in Q, 

change in the two inputs, change in revenue, and change in gross revenue assuming that the only 
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two uses of inputs are alfalfa and cotton, that there are only two inputs used in production, and 

that alfalfa and cotton are the only two crops competing for these inputs. In contrast to the single-

output model, the two-output model requires input 1 to represent the same aggregate input 1 in 

the production of both crops. We repeat the two-output model using both computations of the 

elasticity of supply of input 1 for the single-output model for alfalfa and cotton in order to 

provide a range of results, all of which maintain the implicit assumption that all non-fertilizer 

inputs are used in the exact same proportion to each other in the production of both crops. In 

addition, the two-output model requires estimates of initial shares of each input going to each 

crop. Estimates are based on the nitrogen fertilizer inputs and all non-nitrogen contributors to 

each crop’s total operating costs reported in the University of California Cooperative Extension 

Cost and Return Studies (2015), scaled up by the total number of acres allocated to each crop in 

each of the four counties in 2012. 

The results of the simulations based on the two-output model are reported in Table 14.   

For all simulations, percentage reductions in output and use of nitrogen fertilizer are smaller for 

alfalfa than for cotton, while increases in the aggregate input 1 are larger for alfalfa than for 

cotton. These results are more pronounced the larger is alfalfa’s share of input costs, i.e. from left 

to right among the counties as ordered here, which is driven by each county’s output mix (rather 

than differences in management practices, which are assumed constant across counties). Also, 

while the percentage decrease in cotton output exceeds that for alfalfa in all simulations, both 

outputs decrease more in counties where alfalfa’s share of total output is higher. This result 

demonstrates that the more dominant is the output with the lower elasticity of substitution, the 

greater the impact of an emissions cap on both outputs, since fewer opportunities exist for 

substitution among producers to meet the cap.  
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There is only one qualitative difference resulting from changing the elasticity of supply 

of the aggregate input 1: at the larger value, cotton production takes on larger increases in use of 

input 1 in counties where alfalfa dominates, but at the smaller value, the increase in input 1 is 

smaller where alfalfa dominates. This indicates that inelastic supply of the low-emissions input 

results in less substitution towards it by producers of the emissions-intensive output when that 

output represents a small share of the sector. Under circumstances like those in Tulare County, 

the more inelastic the supply of non-nitrogen inputs, the more costly is a cap on nitrogen 

fertilizer. This result is evident also in the endogenous permit price of input 2, which increases 

with the elasticity of supply of input 1 as well as the increase in alfalfa’s output share.  

 

6.3 Two-output model on intra-sectoral dynamics  

The model can also be used to simulate a two-sector offset program like the one currently 

being tested within the California cap-and-trade program. Here we simplify the two outputs as 

“agriculture” ( 2 Ax ) and “industry” ( 2Bx ) to examine the inter-sectoral dynamics while allowing, 

but not detailing, the intra-sectoral adjustments that are more comprehensively studied in the 

applications above. To understand the model, suppose that the emissions intensity of each 

product within a sector is fixed, so that what looks like an adjustment between the two inputs in a 

single sector is driven by unspecified adjustments in the output mix within that sector. For 

example, since perennial crops tend to have lower greenhouse gas emissions than annuals (Eagle 

and Olander, 2012), a shift away from fertilizer-intensive crops toward perennial crops would 

show up in the model as a decrease in input 2 and an increase in input 1 with a magnitude 

depending on the elasticity of substitution A  between inputs in the agricultural sector. The 

elasticity of substitution here is defined at the sector level and represents the substitutability 
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between inputs to produce an “aggregate output” with a known demand function. Although this 

aggregation puts considerable strain on the elasticity of substitution and the elasticity of demand 

for the aggregate output, we find it a useful exercise to demonstrate the mechanism of an offset 

program even if we do not have access to appropriate empirically estimated parameters. 

Because this is a two-input model, the same two inputs are used for both sectors (and 

only those two sectors) and their prices are determined simultaneously as they are allocated 

between the sectors. We run two simulations: a partial-cap simulation in which only the 

industrial sector is subject to the cap and a full-cap simulation in which both sectors are fully 

regulated by the cap. In the partial-cap simulation, the percentage change in the amount of input 

2 used in output B is fixed at 2ln Bd x  resulting in an endogenous permit price *
2t  that must be 

paid by producers of output B in addition to the cost of input 2. (Note that *
2t  is measured as a 

percentage of the cost of input 2 rather than a per-unit addition.) Producers of output A are not 

subject to the permit price, but the underlying price of input 2 faced by both producers will 

change as a result of the partial-cap program. In the full-cap simulation, both sectors’ use of 

input 2 is capped at an exogenous value, i.e. 2 2 2A Bx x x  , or in percentage changes, 

2 2 2 2 2ln ln lnA A B Br d x r d x d x  . Given the framework, this full-cap scenario is identical to a 

full-offset scenario in which only output B is subject to a cap but the cap increases with 

reductions from the use of input 2 in the production of output A, i.e. 2 2 2B B Ax x x  .  

Simulation results within this framework are reported in Table 15, which uses some of 

the same data used in Table 14, with the agricultural sector using the Tulare County alfalfa 

production parameter values and the industrial sector using the Tulare County cotton production 

parameter values. These parameter values were chosen not for realism but so that this application 



36 
 

of the model could be evaluated relative to the other applications. Thus column (1), which 

simulates the full-cap/full-offset scenario, is the same as column (4) of Table 14. Column (2) 

presents the results for a partial cap regulation in which only the industrial sector is subject to an 

input cap of the same size. Because the units are percentage changes, this means that the 

industrial sector is required to reduce its use of input 2 by 6.286% (or, to 93.7143% of its initial 

value), which will be smaller in absolute terms than the full two-sector economy’s reduction by 

the same percentage change. The overall reduction in use of input 2 in this scenario is only 

2.317%, due in part to the fact that only the industrial sector is subject to the cap but also because 

the agricultural sector is free to increase its use of input 2, which it does. This is because the 

industrial sector’s reductions in use of input 2 (corresponding to an increase in that sector’s 

overall cost of using it) make it cheaper for the agricultural sector. In increasing its use of input 

2, agriculture substitutes away from input 1, but only slightly, with net increases in total output. 

A problem with relying solely on these two simulations to compare a comprehensive cap-

and-trade program to one that excludes agriculture is that the magnitude of the total emissions 

reduction differs between them. Column (3) of Table 15 presents results of the same model when 

the industrial sector’s reduction in use of input 2 is increased to the level achieved under the full-

cap scenario, 8.775%. In this case, the qualitative results in column (2) still hold: agriculture 

actually increases its use of input 2 as well as its output, resulting in only a 3.235% two-sector 

economy-wide reduction in use of input 2. To achieve an economy-wide reduction equal to the 

6.286% reduction in column (1), the cap on the industrial sector’s emissions must be increased to 

17.05%. Results based on this partial-cap level are reported in column (4). Looking for a pattern 

across columns (2) through (4), we see that the closer we come to holding industry to the 

economy-wide standard, the greater is agriculture’s “offsetting” increase in use of the emissions-
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intensive input. This type of offset is in direct opposition to the logic of offset programs, which 

seek to extend the same opportunity costs of use of the capped input to producers not directly 

regulated under the cap. When the industrial sector bears full responsibility for reducing total 

emissions, the endogenous permit price increases from 9.4% to nearly 15%. 

Given the inter-sectoral linkages through input markets, it makes sense to advocate 

comprehensive regulation that treats all emissions equally. However, in practice, sectors are not 

regulated equally. One reason is that they are already embedded within existing regulatory 

frameworks designed for purposes other than air pollution control. In such a context, offset 

programs serve to link diverse sectors. A full linkage would perfectly transfer the opportunity 

costs of emissions from the industrial sector to the agriculture sector, allowing agricultural 

abatement to directly offset industrial emissions, and would be simulated in this model in exactly 

like a full-cap program. The only potential difference in the two policies would be the initial 

permit allocation, which is not a feature of this model. 

 

7. Conclusion 

Like other sectors considered in climate change mitigation policy, agriculture can be 

characterized as a system of multiple outputs in which some inputs generate greenhouse gases 

and thus attract attention from regulators. California’s cap-and-trade program for industrial 

emissions may someday expand to include greenhouse gases emitted by agriculture. To capture 

the key tradeoffs of such a policy, we develop an equilibrium displacement model with two 

agricultural outputs and two inputs: one with measurable greenhouse gas emissions and another 

with none. We use this model to analyze the effects of an emissions cap on input prices and 
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quantities, output prices and quantities, the emissions-intensity of production, and the output 

mix.  

Building on the work by Alston, Norton, and Pardey (1995) and James (2001), we have 

extended Muth’s (1964) model in several useful directions for contemporary policy analysis. 

First, we consider more than one output in order to capture the inter-sectoral effects of policy. 

Second, we demonstrated that equilibrium displacements can be modeled as either shifts of 

supply (or demand) curves or a price wedge between the curves. Finally, we simulate not only a 

tax on inputs but also a cap on inputs that generates an endogenous value for the input permit 

price. It is not possible to make this variable endogenous under the shifter approach, and the 

impacts are trivial under the single-output case. 

Results show that an emissions cap reduces the quantities and gross revenues and 

increases the prices of agricultural outputs as well as the high-emissions input. Gross revenues to 

suppliers of the high-emissions (low-emissions) input decrease (increase) in most cases unless 

the elasticity of demand is high and the elasticity of substitution is high (low). Use of the low-

emissions input increases to offset reductions in use of the high emissions input for each output 

except when the output has a high elasticity of demand or a high elasticity of substitution. In 

these cases, the decreasing use of the low-emissions input in production of the relatively elastic 

output is more than offset by increasing use of it in the production of the other output. When the 

elasticity of demand differs between the two outputs, the input cap shifts the output mix toward 

the one with more inelastic demand. This effect is weakened when the output with the higher 

elasticity of demand uses a higher initial share of the high emissions input. The endogenous price 

of permits under the cap is lower when demand elasticities and the elasticity of substitution are 

higher.  
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We have found several notable relationships between key parameters describing the two-

input two-output agricultural system on the output mix, emissions intensity of output, and input 

and output prices under cap on the use of high-emissions input. First, there is a reduction in the 

production of both outputs as well as their use of the high-emissions input in all cases. Second, 

the percentage change in output prices under a cap on the high-emissions input are the same for 

both outputs as long as they have the same emissions-intensity or same elasticity of demand, but 

are more negative for the output with more elastic demand when emissions intensity differs, 

regardless of which output is more emissions-intensive.  

Third, the effect of the input cap on output mix is invariant to the difference in the 

elasticities of substitution between the two outputs when they have the same emissions intensity. 

Fourth, decreases in production (along with corresponding increases in output prices) are 

exacerbated by lower elasticities of substitution in the output with a higher initial share of the 

emissions-intensive good. When the elasticity of substitution for one of the outputs is low, the 

decrease in that output’s use of input 2 is not offset with an increase in use input 1. Fifth, 

increasing the elasticity of demand for one of the goods reduces the endogenous permit price, but 

negatively affects the gross revenue for that output. The permit price is also lower when 

production of the more emissions-intensive good has a higher elasticity of substitution between 

inputs. 

 Using an equilibrium displacement model to demonstrate these mechanisms is prescient 

for the contemporary discussion and experimentation with cap-and-trade programs to reduce 

greenhouse gas emissions. Although scientific estimation of the emissions intensity of 

agricultural processes remains incomplete, our analysis sheds light on how the agricultural sector 
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might be covered by climate change mitigation policy alongside industrial emitters, potentially 

reducing leakage and achieving a given level of emissions reductions at lower cost.  

We used data on the production of cotton and alfalfa in California and a number of 

simplifying assumptions to simulate how these crops would fare if their greenhouse gas 

emissions were capped. Results from the single-output model indicate that cotton production 

would contract much more than alfalfa production due to its high elasticity of demand and low 

elasticity of substitution, leading to a smaller offsetting increase in the emissions-intensive input 

and placing less pressure on the market for permits for the emissions-intensive input. The two-

output model corroborates these results, demonstrating a stronger shift away from cotton than 

from alfalfa and highlighting the importance of knowledge of baseline input and output shares: 

when cotton’s share of total output is higher, the input cap has a less negative effect on both 

producers’ welfare because the market for permits is lubricated by cotton’s relatively high 

elasticity of substitution between inputs. This is true even though cotton is more emissions-

intensive at baseline. 

Finally, our offset market simulations provide a qualitative indication of the potential 

costs of excluding agricultural altogether from the overall greenhouse gas cap-and-trade 

regulation. If agriculture is linked to industry via input markets, then regulation of industry alone 

will effectively reduce the price of emissions faced by agriculture, requiring a much higher cap 

on industry to achieve the targeted economy-wide emissions reductions. Although the 

biophysical processes underlying agricultural emissions are more complex than outlined here, 

these results indicate their potential to undermine the goals of climate change mitigation policy if 

ignored, even when baseline emissions predominantly originate from industrial sources. 
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Figure 1: Price wedge due to an output tax 
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Table 1: Output (and percentage change) under three output tax levels, simple model 
  t=0.01 t=0.1 t=0.2 

(A)  Linear 996,008 
(-0.3992%) 

960,784 
(-3.922%) 

923,077 
(-7.692%) 

(B)  Linear in logarithms 996,026 
(-0.3974%) 

962,593 
(-3.741%) 

929,667 
(-7.033%) 

(C)  Logarithmic differential 
approximation 

996,000 
(-0.4000%) 

960,000 
(-4.000%) 

920,000 
(-8.000%) 

Notes: We set 0 1,000,000Q  , 0 100P  , 0.5   , and 2  . 
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Figure 2: Equilibrium displacement with two equivalent approaches 
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Figure 3: Effect of a tax on input 2 
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Table 2: System of equations, two-input single output model 

 General equations Logarithmic differential equations 
with an input price wedge 

Logarithmic differential equations with a 
supply shifter 
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in inputs, so Euler’s theorem yields 1 2
1 2
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d x d x d x

d x d x d x

d w d w d w

d w d w t

 

 

 

 

 

 

2 2 2l

Same

Same

Same

Same

n ln lnD Sd w d w d w 
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Table 3: Revenue changes in the two-input single output model 
Result Expression 
Percentage change in gross revenue 

    2 2 2 11
ln 0 when 1

II

t s
d PQ

D

   


 
     

Percentage change in revenue to suppliers of 1x      2 2 2 1
1 1 1 1

1
ln ln ln

                0 when 
II

t s
d w x d w d x

D

   

 

 
  

  

 

Percentage change in revenue to suppliers of 2x  (after tax paid) 
      

  

  

2 1 2 1 1 2 1 1 2

2 2

2 1 2 1 1 2

2 1 1 1 2

ln

1
                 

( ) 1
                 

                 <0 when 

S

II

II

II

t s s s s
d w x

D

t s s

D

t s

D

         

     

      

 

      

  


   


 
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Percentage change in revenue to suppliers of 2x  (before tax paid) 
      

 

   

 

2 2 1 1 2 1 1 2

2 2

2 2 1 2 1 1 1 1 2

2 2 1 1 1 1 2

2 2 1 1 1 1 1

ln

                  =

                  =

                  =

D

II

II

II

t s s s s
d w x

D

t s s s s

D

t s s

D

t s

       

        

        

           

      

      

      

       

 
    

2 1

2 2 1 1 1

                     since 1

1 ( 1)
                  =

                 0 when  , 1

II

II

D

s s

t s

D

      

  



 

      

    
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Table 4: Percentage change in prices and quantities 
 Inelastic demand Elastic demand 

 Output tax, 
simple model 

Input tax, two-input model Output tax, 
simple model 

Input tax, two-input model 

 0.1t   2 0.1t   0.1t   2 0.1t   

 2   1 2 2    

1 2 0.5s s   

2   1 2 2    

1 2 0.5s s   

 0.5    0.5    1.5    1.5    

  0.5   1.5   2.5    0.5   1.5   2.5   
 (1) (2) (3) (4) (5) (6) (7) (8) 

lnd Q  -4.00% -2.000% -2.000% -2.000% -8.57% -4.286% -4.286% -4.286% 

ln Dd P  8.00% 4.000% 4.000% 4.000% 5.71% 2.857% 2.857% 2.857% 

ln Sd P  -2.00% -- -- -- -4.29% -- -- -- 

1lnd x  -- 0.000% 2.286% 3.556% -- -2.286% 0.000% 1.270% 

2lnd x  -- -4.000% -6.286% -7.556% -- -6.286% -8.571% -9.841% 

1lnd w  -- 0.000% 1.143% 1.778% -- -1.143% 0.000% 0.635% 

2ln Sd w  -- -2.000% -3.143% -3.778% -- -3.143% -4.286% -4.921% 

2ln Dd w  -- 8.000% 6.857% 6.222% -- 6.857% 5.714% 5.079% 

 ln Dd P Q  
4.00% 2.000% 2.000% 2.000% -2.86% -1.429% -1.429% -1.429% 

 ln Sd P Q  
-6.00% -- -- -- -12.86% -- -- -- 

 1 1lnd w x  -- 0.000% 3.429% 5.333% -- -3.429% 0.000% 1.905% 

  2 2ln Dd w x  
-- 4.000% 0.571% -1.333% -- 0.571% -2.857% -4.762% 

 2 2ln Sd w x  
-- -6.000% -9.429% -11.333% -- -9.429% -12.857% -14.762% 
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Table 5: System of equations, two-input two-output model 

 General equations Logarithmic differential equations with an input price wedge 

Consumer demand ( )D
j jQ f P  ln lnD

j j jd Q d P , ,j A B   

Production 
1 2( , )S

j j j jQ Q x x  1 1 2 2ln ln lnS
j j j j jd Q s d x s d x  , ,j A B  

Input demand 
1

1 1

D A B
A B

A B

Q Q
w P P

x x

 
 

 
 2 2

1 1 2ln ln ln lnj jD D D
j j j

j j

s s
d w d P d x d x

 
   , ,j A B  

2
2 2

D A B
A B

A B

Q Q
w P P

x x

 
 

 
  1 1

2 1 2ln ln ln lnj jD D D
j j j

j j

s s
d w d P d x d x

 
   , ,j A B  

Input supply 
1 1 1 1( )S S S S

A Bx x x g w     1 1 1 1 1 1 1ln ln ln lnS S S S S
A B A A B Bd x x d x r d x r d x     

1 1ln Sd w  

 
2 2 2 2 2( , )S S S S

A Bx x x h w b     2 2 2 2 2 2 2ln ln ln lnS S S S S
A B A A B Bd x x d x r d x r d x     

2 2ln Sd w  

Market clearing 

1 1 1

, ,

, 1, 2; ,

D S
j j j

D S
ij ij ij

D S

Q Q Q j A B

x x x i j A B

w w w

  

   

 

 

 2 2 21D Sw w t   

ln ln ln , ,

ln ln ln , 1,2; ,

D S
j j j

D S
ij ij ij

d Q d Q d Q j A B

d x d x d x i j A B

  

   
 

1 1 1ln ln lnD Sd w d w d w   

2 2 2ln lnD Sd w d w t   
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Table 6: Percentage change in prices and quantities under 10% tax on input 2, two-input two-output model 
 One-output two-input model Two-output two-input model 

 
1 2 2    1 2 2    

 
1 2 0.5s s   1 2 0.5A As s  , 1 2 0.5B Bs s   

1 1 0.5A Br r  , 2 2 0.5A Br r   

 1.5   0.5   1.5   1.5A B    1.5A B    2.5A   

 .5    1.5    1.5    .5A B     1.5A    

.5B    

0.5B   

.5A B     

 (1) (2) (3) (4) (5) (6) 

lnd Q  -2.000% -4.286% -4.286% -- -- -- 

ln Ad Q  -- -- -- -2.000% -5.000% -2.000% 

ln Bd Q  -- -- -- -2.000% -1.667% -2.000% 

ln Dd P  4.000% 2.857% 2.857% -- -- -- 

ln D
Ad P  -- -- -- 4.000% 3.333% 4.000% 

ln D
Bd P  -- -- -- 4.000% 3.333% 4.000% 

1lnd x  2.286% -2.286% 0.000% 2.286% 0.952% 2.286% 

1ln Ad x  -- -- -- 2.286% -0.714% 5.143% 

1ln Bd x  -- -- -- 2.286% 2.619% -0.571% 

2lnd x  -6.286% -6.286% -8.571% -6.286% -7.619% -6.286% 

2ln Ad x  -- -- -- -6.286% -9.286% -9.143% 

2ln Bd x  -- -- -- -6.286% -5.952% -3.429% 

1lnd w  1.143% -1.143% 0.000% 1.143% 0.476% 1.143% 

2ln Sd w  -3.143% -3.143% -4.286% -3.143% -3.810% -3.143% 

2ln Dd w  6.857% 6.857% 5.714% 6.857% 6.190% 6.857% 

 ln Dd P Q  2.000% -1.429% -1.429% -- -- -- 
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 ln D
A Ad P Q  -- -- -- 2.000% -1.667% 2.000% 

 ln D
B Bd P Q  -- -- -- 2.000% 1.667% 2.000% 

 1 1lnd w x  3.429% -3.429% 0.000% 3.429% 1.429% 3.429% 

 2 2ln Sd w x  -9.429% -9.429% 12.86% -9.429% -11.429% -9.429% 
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Table 7: Percentage change in prices and quantities under cap on input 2 equivalent to a 10% tax on input 2, two-input two-
output model 
 10% input tax 93.7143% cap on inputs 

 
1 2 2    

1 2 0.5A As s  , 1 2 0.5B Bs s  , 

1 1 0.5A Br r  , 2 2 0.5A Br r   

1.5A B    1.5A B    1.5A B    2.5A   

0.5B   

.5A B     .5A B     1.5A    

.5B    

.5A B     

 (1) (2) (3) (4) 

ln Ad Q  -2.000% -2.000% -4.125% -2.133% 

ln Bd Q  -2.000% -2.000% -1.375% -2.133% 

ln D
Ad P  4.000% 4.000% 2.750% 4.266% 

ln D
Bd P  4.000% 4.000% 2.750% 4.266% 

1lnd x  2.286% 2.286% 0.786% 2.019% 

1ln Ad x  2.286% 2.286% -0.589% 6.009% 

1ln Bd x  2.286% 2.286% 2.161% -1.970% 

2lnd x  (or 2lnd x ) -6.286% (-6.286%) (-6.286%) (-6.286%) 

2ln Ad x  -6.286% -6.286% -7.661% -10.275% 

2ln Bd x  -6.286% -6.286% -4.911% -2.296% 

1lnd w  1.143% 1.143% 0.393% 1.010% 

2ln Sd w  -3.143% -3.143% -3.143% -3.143% 

2ln Dd w  6.857% 6.857% 5.107% 7.523% 
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*
2t  or ( 2t ) (10.0000%) 10.000% 8.250% 10.666% 

 ln A Ad P Q  2.000% 2.000% -1.375% 2.133% 

 ln B Bd P Q  2.000% 2.000% 1.375% 2.133% 

 1 1lnd w x  3.429% 3.429% 1.179% 3.029% 

 2 2ln Sd w x  -9.429% -9.429% -9.429% -9.429% 
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Table 8: Percentage change in prices and quantities under cap on input 2 equivalent to a 10% tax on input 2 with different 
initial input shares, two-input two-output model 
 Two-output two-input model 

93.7143% cap on inputs 

 
1 2 2   , 1 2 0.5A As s  , 1 2 0.5B Bs s  , 1 0.5Ar  , 1 0.5Br   

2 0.9Ar  , 2 0.1Br   2 0.1Ar  , 2 0.9Br   

    1.5
A B 


    .5
A B 
 

 

   1.5
A B 


 

1.5A   .5B  

2.5A   

0.5B 
   .5
A B 
 

 
    1.5

A B 


    .5
A B 
 

 

   1.5
A B 


 

1.5A  
.5B    

2.5A   

0.5B 

   .5
A B 
 

 

 (1) (2) (3) (4) (5) (6) 
ln Ad Q  -2.000% -3.511% -1.467% -2.000% -5.000% -3.143% 

ln Bd Q  -2.000% -1.170% -1.467% -2.000% -1.667% -3.143% 

ln D
Ad P  4.000% 2.340% 2.933% 4.000% 3.333% 6.286% 

ln D
Bd P  4.000% 2.340% 2.933% 4.000% 3.333% 6.286% 

1lnd x  2.286% 0.669% 1.676% 2.286% 0.952% 3.592% 

1ln Ad x  2.286% -0.502% 3.771% 2.286% -0.714% 8.082% 

1ln Bd x  2.286% 1.839% -0.419% 2.286% 2.619% -0.898% 

2lnd x  -6.286% -6.286% -6.286% -6.286% -6.286% -6.286% 

2ln Ad x  -6.286% -6.520% -6.705% -6.286% -9.286% -14.367% 

2ln Bd x  -6.286% -4.179% -2.514% -6.286% -5.952% -5.388% 

1lnd w  1.143% 0.334% 0.838% 1.143% 0.476% 1.796% 

2ln Sd w  -3.143% -3.143% -3.143% -3.143% -3.143% -3.143% 

2ln Dd w  6.857% 4.347% 5.029% 6.857% 6.190% 10.776% 

*
2t  10.000% 7.489% 8.171% 10.000% 9.333% 13.918% 



59 
 

 ln A Ad P Q  2.000% -1.170% 1.467% 2.000% -1.667% 3.143% 

 ln B Bd P Q  2.000% 1.170% 1.467% 2.000% 1.667% 3.143% 

 1 1lnd w x  3.429% 1.003% 2.514% 3.429% 1.429% 5.388% 

 2 2ln Sd w x  -9.429% -9.429% -9.429% -9.429% -9.429% -9.429% 
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Table 9: Percentage change in prices and quantities under cap on input 2 equivalent to a 10% tax on input 2 with different 
initial input shares and elasticities of substitution, two-input two-output model 
 Two-output two-input model 

94.05319% cap on inputs 

 
1 2 2   , 1 2 0.5A As s  , 1 2 0.5B Bs s  , 1 0.5Ar  , 1 0.5Br   

 
2 0.9Ar  , 2 0.1Br   2 0.1Ar  , 2 0.9Br   

0.5A   

2.5B 

1.5A  
.5B    

   1.5
A B 


 

1.5A   .5B    

2.5A   

0.5B  1.5A   .5B    

0.5A   

2.5B 

1.5A  
.5B    

   1.5
A B 


 

1.5A  
.5B    

2.5A   

0.5B 

1.5A  
.5B    

 (1) (2) (3) (4) (5) (6) 

ln Ad Q  -4.714% -3.511% -2.797% -3.667% -5.000% -7.857% 

ln Bd Q  -1.571% -1.170% -0.932% -1.222% -1.667% -2.619% 

ln D
Ad P  3.143% 2.340% 1.864% 2.444% 3.333% 5.238% 

ln D
Bd P  3.143% 2.340% 1.864% 2.444% 3.333% 5.238% 

1lnd x  0.898% 0.669% 0.533% 0.698% 0.952% 1.497% 

1ln Ad x  -3.367% -0.502% 1.199% -2.619% -0.714% 3.367% 

1ln Bd x  5.163% 1.839% -0.133% 4.016% 2.619% -0.374% 

2lnd x  -6.286% -6.286% -6.286% -6.286% -6.286% -6.286% 

2ln Ad x  -6.061% -6.520% -6.792% -4.714% -9.286% -19.082% 

2ln Bd x  -8.306% -4.179% -1.731% -6.460% -5.952% -4.864% 

1lnd w  0.449% 0.334% 0.266% 0.349% 0.476% 0.748% 

2ln Sd w  -3.143% -3.143% -3.143% -3.143% -3.143% -3.143% 

2ln Dd w  5.837% 4.347% 3.462% 4.540% 6.190% 9.728% 

*
2t  8.980% 7.489% 6.605% 7.683% 9.333% 12.871% 
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 ln A Ad P Q  -1.571% -1.170% -0.932% -1.222% -1.667% -2.619% 

 ln B Bd P Q  1.571% 1.170% 0.932% 1.222% 1.667% 2.619% 

 1 1lnd w x  1.347% 1.003% 0.799% 1.048% 1.429% 2.245% 

 2 2ln Sd w x  -9.429% -9.429% -9.429% -3.667% -5.000% -7.857% 
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Table 10: Elasticities, assuming 2 =2 

   Short-run  
Cost share of 

water 
Cost share of 

fertilizer 
Short-run   

assumed 
Short-run 1  

computed 
Alfalfa a -0.11e 0.35 to 0.66e 0.46 0.08 0.78 0.45 
Cotton b -0.68e or -0.95f 0.53e or 0.46f 0.21 0.13 1.55 0.37 
Rice c 0.08e or -0.36f 0.23e or 0.45f 0.09 0.12 2.41 0.20 
Processing 
tomatoes d 

-0.18e 0.41e 0.14 0.10 1.96 0.31 

Notes: Elasticities of output supply and demand are from Russo, Green, and Howitt (2008). Cost shares of water and fertilizer are 
computed from the most recent University of California Cooperative Extension Cost and Return Studies (2015). The values of the 
elasticity of substitution   between inputs are computed based on the assumption that ln(Cost share of water)   , allowing 1  to 

be computed from empirical elasticities (or their average when there are two or the average of the endpoints if there is a range of 
values reported) and cost shares and equation ##, assuming that 2 =2. 
a Cost shares based on average of 300-acre and 50-acre planting values, both for Tulare County 2014. 
b Cost shares based on average of Acala, Pima, and Acala transgenic herbicide resistant values, all for San Joaquin Valley 2012. 
c Cost shares based on medium grain rice-only rotation, Sacramento Valley 2012. 
d Cost shares based on average of drip and furrow irrigation values, both for Sacramento Valley 2014. 
e Single-equation models 
f Systems of questions models 


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Table 11: Single-output model: percentage change in prices and quantities given 93.7143% cap on input 2 with parameter 
estimates from the California agriculture sector 
 Alfalfa Cotton Rice Processing tomatoes 

lnd Q  -0.155% -0.723% -0.463% -0.267% 

ln Dd P  1.405% 0.888% 2.105% 1.486% 

1lnd x  0.345% 0.126% 0.356% 0.365% 

2lnd x  -6.286% -6.286% -6.286% -6.286% 

1lnd w  0.765% 0.339% 1.764% 1.163% 

2ln Sd w  -3.143% -3.143% -3.143% -3.143% 

2ln Dd w  9.260% 4.482% 4.523% 4.554% 
*
2t  12.403% 7.625% 7.666% 7.697% 

 ln Dd P Q  1.250% 0.164% 1.642% 1.218% 

 1 1lnd w x  1.110% 0.465% 2.120% 1.528% 

 2 2ln Sd w x  -9.429% -9.429% -9.429% -9.429% 
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Table 12: Baseline input data 
 Nitrogen 

quantity 
(pounds per 

acre) 

Water quantity 
(inches per 

acre) 

2012  
acreage,  
Fresno  

County b 

2012  
acreage,  

Kern  
County b 

2012  
acreage,  
Merced  
County b 

2012  
acreage,  
Tulare  

County b 
Alfalfa 22a 54a 73,015 63,767 81,504 87,546 
Cotton 58.47c 30c 106,400 55,547 48,522 26,672 
a Forthcoming University of California Cooperative Extension  Cost and Return Studies (2015) for Tulare County, 2014.  
b From NASS (2015). 
c Average of values of three University of California Cooperative Extension  Cost and Return Studies (2015) for different cotton 
varieties in San Joaquin Valley, 2012. All three studies agreed on water usage. 
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Table 13: Baseline input shares for two-input model 

 Non-nitrogen input share Nitrogen fertilizer input share 
 Fresno 

County  
Kern 

County  
Merced 
County  

Tulare 
County  

Fresno 
County  

Kern 
County  

Merced 
County  

Tulare 
County  

Alfalfa 0.38 0.51 0.60 0.75 0.21 0.30 0.39 0.55 
Cotton 0.62 0.49 0.40 0.25 0.79 0.70 0.61 0.45 
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Table 24: Two-output model: percentage change in prices and quantities given 93.7143% cap on input 2 with parameter 
estimates from four California counties 

 
1 0.451   1 0.371   

 (1) (2) (3) (4) (5) (6) (7) (8) 
 Fresno Kern Merced Tulare Fresno Kern Merced Tulare 

Alfalfalnd Q  -0.079% -0.084% -0.089% -0.101% -0.082% -0.088% -0.094% -0.107% 

Cottonlnd Q  -0.801% -0.852% -0.903% -1.020% -0.824% -0.880% -0.936% -1.064% 

Alfalfaln Dd P  0.718% 0.766% 0.813% 0.922% 0.747% 0.801% 0.855% 0.977% 

Cottonln Dd P  0.982% 1.046% 1.108% 1.251% 1.011% 1.080% 1.149% 1.305% 

1lnd x  0.166% 0.179% 0.191% 0.219% 0.148% 0.161% 0.173% 0.201% 

1Alfalfalnd x  0.194% 0.204% 0.215% 0.238% 0.189% 0.199% 0.209% 0.231% 

1Cottonlnd x  0.149% 0.153% 0.156% 0.164% 0.123% 0.121% 0.119% 0.115% 

2lnd x  -6.286% -6.286% -6.286% -6.286% -6.286% -6.286% -6.286% -6.286% 

2Alfalfalnd x  -3.425% -3.623% -3.820% -4.270% -3.416% -3.614% -3.811% -4.260% 

2Cottonlnd x  -7.025% -7.436% -7.844% -8.775% -7.027% -7.440% -7.850% -8.788% 

1lnd w  0.369% 0.396% 0.424% 0.486% 0.399% 0.433% 0.467% 0.543% 

2ln Sd w  -3.143% -3.143% -3.143% -3.143% -3.143% -3.143% -3.143% -3.143% 

2ln Dd w  5.004% 5.300% 5.593% 6.262% 5.019% 5.318% 5.616% 6.296% 

*
2t  8.147% 8.442% 8.736% 9.405% 8.162% 8.461% 8.759% 9.439% 

 Alfalfa Alfalfalnd P Q  0.639% 0.682% 0.724% 0.820% 0.665% 0.713% 0.761% 0.869% 

 Cotton Cottonlnd P Q  0.182% 0.193% 0.205% 0.232% 0.187% 0.200% 0.213% 0.241% 

 1 1lnd w x  0.535% 0.575% 0.615% 0.706% 0.547% 0.594% 0.640% 0.745% 

 2 2ln Sd w x  -9.429% -9.429% -9.429% -9.429% -9.429% -9.429% -9.429% -9.429% 
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Table 15: Two-output model with offsets: percentage change in prices and quantities  
 Full-cap/ 

full-offset regulation 
of both sectors 

Partial-cap regulation  
of industrial sector only 

(input 2 cap of 93.7143%) 

Partial-cap regulation  
of industrial sector only 

(input 2 cap of 86.8374%) 

Partial-cap regulation  
of industrial sector only 

(input 2 cap of 82.950%) 
 (1) (2) (3) (4) 

Agriculturelnd Q  -0.101% 0.001% 0.002% 0.004% 

Industrylnd Q  -1.020% -0.528% -0.737% -1.433% 

Agricultureln Dd P  0.922% -0.013% -0.018% -0.036% 

Industryln Dd P  1.251% 0.648% 0.905% 1.758% 

1lnd x  0.219% 0.036% 0.050% 0.098% 

1Agriculturelnd x  0.238% -0.071% -0.100% -0.194% 

1Industrylnd x  0.164% 0.351% 0.490% 0.952% 

2lnd x  -6.286% -2.317% -3.235% -6.286% 

2Agriculturelnd x  -4.270% 0.896% 1.250% 2.429% 

2Industrylnd x  -8.775% -6.286% -8.775% -17.050% 

1lnd w  0.486% 0.080% 0.112% 0.217% 

2ln Sd w  -3.143% -1.159% -1.618% -3.143% 

2ln Dd w  6.262% -- -- -- 

2ln D
Ad w  -- -1.159% -1.618% -3.143% 

2ln D
Bd w  -- 4.368% 6.098% 11.849% 

*
2t  9.405% 5.527% 7.716% 14.992% 

 Agriculture Agriculturelnd P Q  0.820% -0.012% -0.016% -0.032% 

 Industry Industrylnd P Q  0.232% 0.120% 0.167% 0.325% 

 1 1lnd w x  0.706% 0.116% 0.162% 0.315% 

 2 2ln Sd w x  -9.429% -3.476% -4.853% -9.429% 
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Appendix  

The “Muth model” is presented in multiple papers with features that vary, making it 

difficult to easily compare results from this extension to previous work. As discussed above, one 

notable difference is whether the equilibrium displacement is treated as a demand- or supply-

shifter or a price wedge. Another difference among the models simulating curve-shifts is how the 

shift parameter written in the supply and demand functions; sometimes it is simply added onto 

the logarithmic differential equation (e.g. ln lnd Q d P   ; ln lnd Q d P   ) whereas in 

others is it added to the price term and both are multiplied by the relevant elasticity (e.g. 

 ln lnd Q d P   ;  ln lnd Q d P   ). We refer to these approaches as “additive” and 

“multiplicative,” respectively and prefer additive for my own work. Finally, the treatment of the 

demand elasticity varies across presentations; in particular, Alston, Norton, and Pardey (1995) 

use the absolute value, whereas other authors let it take a sign. For these, we have written a “+.” 

The key features of each presentation are outlined below to aid in comparing results. 
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Table A1: Equilibrium displacement model methodological features 
 Muth (1964) Alston, Norton, and Pardey (1995) James (2001) This paper 
Single market     

Displacement -- -- Both Both 
Elasticity & shifter -- -- Additive Additive 
Elasticity sign -- -- + + 

Two-input, one-output     
Displacement Shifter Shifter Both Both 
Elasticity & shifter Multiplicative Multiplicative Additive Additive 
Elasticity sign + Absolute value + + 

Two-input, two-output     
Displacement -- -- -- Wedge (shifter available upon request) 
Elasticity & shifter -- -- -- Additive 
Elasticity sign -- -- -- + 

 


