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Abstract 

As in many developing countries, the number of vehicles in China is increasing 
rapidly; as the economy develops, more people own and use cars. This paper 
examines the effects of public transportation and the built environment on the 
number of civilian vehicles in China.  We use a 2-step GMM instrumental 
variables model and apply it to city-level panel data over the period 2001 to 
2011.  The results show that increasing the road area increases the number of 
civilian vehicles, which provides empirical support for the “fundamental law of 
traffic congestion” in China. In contrast, increasing the public transit passenger 
load decreases the number of civilian vehicles, suggesting that public 
transportation and civilian cars are substitutes.  The effects vary by city 
population, however.  For larger cities, increases in the number of public buses 
increase the number of civilian vehicles, but increases in the number of taxis 
and in road area decrease the number of civilian vehicles. We also find that land 
use diversity increases the number of civilian vehicles, especially in the higher 
income cities and in the extremely big cities. There is no significant relationship 
between civilian vehicles and per capita disposable income except in mega 
cities. 
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1. Introduction  

China’s economy has been developing rapidly ever since China implemented 

economic reforms introducing market principles in 1978 (Chen, Li and Xu, 2007).  Along 

with rapid economic development, China has also experienced accelerated urbanization and 

an increase in the number of vehicles on its roads.  By 2013, over 50 percent of China’s 

population resided in urban areas.  Evidence from Chinese cities suggests average annual 

growth rates in per capita vehicle ownership of 10% to 25% (Darido, Torres-Montoya and 

Mehndiratta, 2014).  According to data from the China Statistical Yearbook, over the period 

1990 to 2011, GDP per capita increased by nearly 16 times, per capita disposable income of 

urban residents increased by about 11 times, and vehicle ownership increased by nearly 56 

times. 

The rapid growth in vehicle ownership and vehicle usage associated with urbanization 

is linked to increasing congestion, global warming, emissions, air pollution, and other 

problems (Pickrell and Schimek, 1999; Kahn, 2000; Brownstone and Golob, 2009; Lin and 

Prince, 2009; Lin and Zeng, 2014; Beaudoin, Farzin and Lin Lawell, 2015; Beaudoin and Lin 

Lawell, 2015; Beaudoin, Farzin and Lin Lawell, forthcoming).  Furthermore, these trends 

are inconsistent with the planning objectives which cities and governments are attempting to 

achieve.  

Policy-makers are becoming increasingly aware of the need to find effective policy 

tools to tackle vehicle ownership-related problems such as congestion and air pollution.  

Policies to change mobility that have been proposed or implemented include driving 

restrictions, urban planning policies, or policies to restrict the number of private car licenses 
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(Newman and Kenworthy, 1989; May, 2013; Lin Lawell, Zhang and Umanskaya, 2015). But 

in practice, these policy instruments have been ineffective.  For example, Lin Lawell, Zhang 

and Umanskaya (2015) find that under certain circumstances, due to substitution, the 

purchase of a second car, the use of alternative modes of transportation, and/or atmospheric 

chemistry, it is possible for driving restrictions to increase air pollution.  

Policies to provide public transportation are not always effective either.  Duranton 

and Turner (2011) find no evidence that the provision of public transportation affects 

vehicle-kilometers traveled in U.S. cities, and conclude that increased provision of roads or 

public transit is unlikely to relieve congestion.  Beaudoin, Farzin and Lin Lawell (2015) find 

that increases in public transit supply lead to a small overall reduction in auto traffic 

congestion, but the magnitude of the effect is subject to heterogeneity across urban areas.  

Beaudoin and Lin Lawell (2015) find no evidence that increased transit supply improves air 

quality.   

Likewise, policies to build additional road area may be ineffective in reducing 

congestion. According to the “fundamental law of traffic congestion”, while investment in 

infrastructure may lead to short-term reductions in congestion, in the long run it will be 

ineffective in the absence of efficient pricing (Beaudoin, Farzin and Lin Lawell, 2015; 

Beaudoin, Farzin and Lin Lawell, forthcoming).  As Hau (1997) states:  

“Latent demand -- demand that has heretofore been suppressed as a result of 

peak-hour congestion -- emerges as soon as the traffic situation is improved. 

Travelers that are currently discouraged from taking a trip during their most 

preferred times by the major form of abatement -- traffic congestion itself -- 
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will respond by traveling closer to their desired time of travel. Because of the 

fundamental law of traffic congestion, traffic will converge on preferred 

places and times until there is congestion. Thus the sole reliance on supply 

measures would not be helpful in solving the congestion conundrum without 

further differentially pricing road use via peak/off-peak charges.” (Hau, 1997, 

pp. 267) 

This “fundamental law of traffic congestion” has been demonstrated empirically for auto 

travel in the U.S. by Duranton and Turner (2011), who show that auto travel volumes 

increase proportionally with the available auto capacity.   

In this paper we examine the effects of public transportation and the built 

environment on the number of civilian vehicles in China using city-level data from 2001 to 

2011.  The results show that increasing the road area increases the number of civilian 

vehicles, which provides empirical support for the “fundamental law of traffic congestion” in 

China. In contrast, increasing the public transit passenger load decreases the number of 

civilian vehicles, suggesting that public transportation and civilian cars are substitutes.   

The effects vary by city population, however.  For larger cities, increases in the 

number of public buses increase the number of civilian vehicles, but increases in the number 

of taxis and in road area decrease the number of civilian vehicles. We also find that land use 

diversity increases the number of civilian vehicles, especially in the higher income cities and 

in the extremely big cities. There is no significant relationship between civilian vehicles and 

per capita disposable income except in mega cities. 

The balance of this paper proceeds as follows.  We review the previous literature in 
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Section 2.  We present data on the number of civilian vehicles in China in Section 3.  We 

present our empirical model in Section 4 and the data in Section 5.  We present our results in 

Section 6.  Section 7 concludes. 

 

 

2. Previous Literature 

Our paper builds upon previous studies of the relationship between economic 

development and car ownership.  Button, Hine and Ngoe (1992) and Dargay (2007) find that 

per capita income is the deciding factor for car ownership, with an S-shaped relationship 

between them. In their study of China using aggregate city-level data from 1995 to 2009, 

Huang, Cao and Li (2013) find that the urbanization level is a significant indicator of private 

car ownership except in mega cities. 

Our paper also builds upon previous studies of the relationship between the built 

environment and transportation.  Also known as land use, urban form, spatial planning, or 

urban geography (Litman, 2012), the built environment refers to various land use factors 

including density, regional accessibility, transit quality, and transit accessibility.  Naess 

(2005) argues that urban structure contributes to travel behavior, but is not the only factor.  

Bento et al. (2005) find that population centrality is important in explaining vehicle 

ownership in cities, but that the impacts of built environment measures are frequently 

statistically insignificant and small in magnitude.  Similarly, Bhat and Guo (2007) find using 

data from the San Francisco Bay Area that built environment measures such as street block 

density, transit availability, and transit access time have a small effect on vehicle ownership. 
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Although most land use factors have modest individual impacts, density tends to 

receive the greatest attention. Ewing and Cervero (2001) and Badoe and Miller (2000) point 

out that as an indicator of urban sprawl, density can be interpreted as a proxy for access to 

employment, shopping, and other travel destinations. Several studies have shown a negative 

relationship between urban density and vehicle miles traveled or energy consumed in private 

transport (Newman and Kenworthy, 1989; Travisi, Camagni and Nijkamp, 2010).  Newman 

and Kenworthy (1999) find a large significant inverse effect of density on vehicle miles 

traveled. Studies of Europe point to the existence of several important relationships at an 

aggregate level among land use patterns, travel behavior, and transit supply; they argue that 

an increasing density is strongly correlated with an increase in the supply of public transport 

both in vehicle kilometers and the presence of rail-based systems (de Abreu e Silva, Golob 

and Goulias, 2006).   

In addition to density, another land use factor that is receiving increasing attention is 

the land use diversity.  An increase in the land use diversity can reduce travel distances and 

allow more walking and cycling trips.  Ewing and Cervero (2010) find that the land use 

diversity reduces vehicle travel.  Frank et al. (2011) find that per capital vehicle travel and 

pollution emissions tend to decline with increased land use diversity.  

In addition to economic development and the built environment, another set of 

variables that can affect car ownership are socioeconomic characteristics.  While land use 

characteristics may explain up to 40% of the variation in car ownership, socioeconomic 

variables often explain more of the variation in mobility patterns than land use variables 

(Stead, Williams and Titheridge, 2001).  
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We build upon the literature in several ways.  First, unlike most of the previous 

studies, which have focused primarily on economic factors, land use factors, socioeconomic 

characteristics, and public transportation factors as determinants of civilian vehicle ownership 

and use, in this paper we examine the effects on the number of civilian vehicles of not only of 

income, land use diversity, population density, and public transportation, but also of road area 

and urban development. A second way in which we build upon the literature is that we use 

2-step GMM IV regression to address potential endogeneity in our empirical model of the 

number of civilian vehicles. 

 

 

3. The number of civilian vehicles in China 

Figure 1 plots the trend in the number of civilian vehicles and the number of civilian 

vehicles per capita in cities in China over the period 2001 to 2011.  Both the number of 

civilian vehicles and the number of civilian vehicles per capita in Chinese cities have been 

steadily increasing during the whole period.  From 2001 to 2011, the number of civilian 

vehicles in Chinese cities increased rapidly from 18.02 million to 93.56 million, and the 

number of civilian vehicles per capita in Chinese cities increased rapidly from 58.83 to 

268.48 vehicles per 1000 people. 
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Figure 1: Number of civilian vehicles and civilian vehicles per capita in China 

 

Source: China Statistical Yearbook for Regional Economy, 2002 to 2012.  

 

 

Figures 2, 3 and 4 map the number of civilian vehicles in cities in China in 2001, 

2005 and 2011, respectively. From the spatial distribution of civilian vehicle ownership, we 

can find the number of civilian vehicles is higher in the coast than inland. The number of 

civilian vehicles is high in the eastern cities, particularly Beijing, Shanghai, Chongqing, and 

Guangzhou, while the number of civilian vehicles in the western cities is lower. In 2011, the 

average numbers of civilian vehicles in small cities, medium cities, big cities, extremely big 

cities, and mega cities are 166,533.4, 225,677, 428,763.5, 941,523.7, and 1,734,877, 

respectively.2  

If we analyze the growth of number of civilian vehicles by city population, we find 

                                                        
2 The classification of cities into small cities, medium cities, big cities, extremely big cities, and mega cities is 

based on population, in accordance with the new standard made by state council of China (State Councile, P.R. 

CHINA, 2014): small cities have less than or equal to 0.5 million people; medium cities have between 0.5 and 1 

million people; big cities have between 1 and 3 million people; extremely big cities have between 3 and 5 

million people; and mega cities have more than 5 million people. 
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that during the period from 2002 to 2011, the number of civilian vehicles increased about 

29.01 times in the mega cities; 5.97 times in medium cities, 5.75 times for big cities, 5.22 

times for small cities, and 3.67 times for extremely big cities. We also find during the past 

decade, the number of civilian vehicles increased more in the latest five years than in the five 

years prior. 

 

 

 

Figure 2:  Number of civilian vehicles in cities in 2001 

 

 Source: China Statistical Yearbook for Regional Economy, 2002.  
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Figure 3:  Number of civilian vehicles in cities in 2005 

 

Source: China Statistical Yearbook for Regional Economy, 2006.  
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Figure 4: Number of civilian vehicles in cities in 2011 

 

Source: China Statistical Yearbook for Regional Economy, 2012.  

 

 

 

 

 

4.  Empirical Model 

In order to empirically analyze effects of public transportation and the built 

environment on the number of civilian vehicles in China, we estimate the following 

econometric model: 
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(1), 

where 
itciviveh  is the number of civilian vehicles in city i in year t; 

ittaxi  is number of taxis 

in city i in year t; 
itbus  is number of public buses in city i in year t; 

ittransit  is public 

transit passenger load in city i in year t; 
1itciviveh 
 is 1-year lag value of civilian vehicles;

itpopden  is population density, which we define as the number of people per square 

kilometer in city i in year t; 
itinc  is per capita disposable income of residents in urban areas 

in city i in year t; 
iturbdev  is urban development, which is defined as the fraction of the 

urban area that is developed; 
itroad  is urban road area in city i in year t; 

itlanduse  is the 

land use diversity in city i in year t;
i  is a city fixed effect, 

t  is a year effect, it  is a 

region-year effect, and 
it  is an error term. 

  The public transportation variables in our model are the number of public buses 

itbus  and the public transit passenger load 
ittransit .  Our built environment variables are 

population density
itpopden , urban development 

iturbdev , urban road area 
itroad , and land 

use diversity 
itlanduse . 

Land use diversity can be measured using entropy indices or dissimilarity indices; 

both methods result in scores from 0 to 1. In this paper, we measure the land use diversity 

using the following Gibbs-Mirtin index (Chen et al., 2009):  

 
2

2
21 1ijt

it ijt

ijt

S
landuse S

S
    


, 

where itS  represents the proportion of area for each land use type j in the total urban 

construction land area of city i in year t.  The types of land use j we consider are: residential; 

industrial; storage; public facilities; transportation systems; roads and plazas; municipal 

utilities; green space; and land for special purposes.  Land use diversity ranges from 0 (least 
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diverse) to 1 (most diverse). 

In the regression in equation (1), one may worry that the number of taxis, the number 

of public buses, and the public transit passenger load may be endogenous to civilian vehicles.  

To test for their endogeneity, we run an IV regression of equation (1) with year and city fixed 

effects using lagged values of the number of taxis, the number of public buses, the public 

transit passenger load as instruments for number of taxis, the number of public buses, the 

public transit passenger load, respectively, and then test for the endogeneity of the number of 

taxis, the number of public buses, and the public transit passenger load.   

Under the null hypothesis that the specified endogenous regressors can actually be 

treated as exogenous, the test statistic in our endogeneity test is distributed as chi-squared 

with degrees of freedom equal to the number of regressors tested.  The test statistic is based 

on the difference of two Sargan-Hansen statistics: one for the equation with the smaller set of 

instruments, where the suspect regressor(s) are treated as endogenous, and one for the 

equation with the larger set of instruments, where the suspect regressors are treated as 

exogenous.  Under conditional homoskedasticity, this endogeneity test statistic is 

numerically equal to a Hausman test statistic (Hayashi, 2000; Baum, Schaffer and Stillman, 

2007).  Unlike Durbin-Wu-Hausman tests, the test statistics we use are robust to various 

violations of conditional homoscedasticity (Baum, Schaffer and Stillman, 2007).  

According to the results of our endogeneity test, the p-value for the number of taxis is 

greater than 0.1 (p-value = 0.7075), so we do not reject the null hypothesis that the number of 

taxis is exogenous.  When we test for the endogeneity of the number of public buses and the 

public transit passenger load using lagged values of the number of public buses and the 
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public transit passenger load as instruments, we reject the null hypothesis that the number of 

public buses is exogenous at a 5% level (p-value = 0.0469) but do not reject the null 

hypothesis that the public transit passenger load is exogenous (p-value= 0.1681).  Since we 

reject the null hypothesis that the number of public buses is exogenous and since it is likely 

that public transit passenger load is endogenous to the number of civilian vehicles, we use the 

lagged values of the number of public buses and the public transit passenger load as 

instruments for the number of public buses and the public transit passenger load, respectively. 

Given that our panel data has large n and small t, we use 2-step GMM methods to 

estimate our IV regression (Roodman, 2009).  We also conduct Arellano-Bond tests for 

AR(1) and AR(2) in first differences (Roodman, 2009).  Our results (not shown) reject the 

null hypothesis of zero autocorrelation in the first-differenced errors at order 1 at a 5% level.  

Serial correlation in the first-differenced errors at order 2 is not significant at a 5% level.  

In addition, we also address potential endogeneity by including city fixed effects, year 

effects, and region-year effects to control for time-invariant city-level unobservables, 

nation-wide shocks that vary year by year, and region-wide shocks that vary year by year, 

respectively. 

 

5.  Data 

We use annual city-level panel data for 284 cities in China over the years 2001 to 

2011. The data in this study are from the China City Statistical Yearbook and the China 

Regional Statistical Yearbook.  
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Table 1 presents summary statistics of the variables in our data set.  Over the period 

2001 to 2011, the number of civilian vehicles ranges from 1816 to 4,732,124, with an average 

of 188,072. For the population density, there is a large gap between the maximum value and 

the minimum value: the minimum value of 12.98 people per km2 appeared in Heihe city in 

2001, and the highest value of 5324.123 people per km2 occurred in Shanghai in 2011. The 

average value for per capita disposable income is 12,105 constant 2001 yuan.  The average 

urban development, as measured by the fraction of the urban area that is development, is 

0.077. The road area varies greatly by city, with an average value of 11,089,000 m2.  The 

average land use diversity is 0.771, which is relatively diverse. There is also great spatial 

disparity in number of taxis: the maximum value is 70,373, but the minimum is only 36.  

The average number of public buses is 1020.  The average public transit passenger load is 

166,480,000 people. 

For the region-year effects in our model, we classify the provinces in China into 3 

regions: the eastern region, the central region and the western region.  The regions are 

mapped in Figure 5.  The eastern region includes the following 11 provinces: Beijing, 

Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and 

Hainan.  The central region includes the following 8 provinces: Shanxi, Heilongjiang, Jilin, 

Anhui, Jiangxi, Henan, Hunan, and Hubei.  The western region includes the following 12 

provinces: Sichuan, Guizhou, Shaanxi, Inner Monglia, Yunnan, Qinghai, Ningxia and 

Xinjiang, Guangxi, Sichuan, Chongqing, and Tibet.  Owing to limits on data availability, 

and because they are separate from mainland China, Macao, Taiwan and Hong Kong are not 

included in any region nor in any regression.
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Table 1.  Summary statistics  

Variable Obs Mean Std. Dev. Min Max 

number of civilian vehicles  3044 188,072 323,621 1816 4,732,124 

population density (people/km2) 3103 90.449 406.964 12.980 5324.123 

per capita disposable income (constant 2001 yuan) 2974 12,105 9795 1136 167,783 

urban development (fraction of the urban area that is developed) 2818 0.077 0.084 0.001 0.763 

road area (10,000 m2) 3089 1108.900 1679.021 14 214,900 

land use diversity 2991 0.771 0.0772 0.024 0.8639 

number of taxis 3092 2997 6096 36 70,373 

number of public buses 3089 1020 2259 22 29,608 

public transit passenger load (10,000 people) 3081 16,648 42,385 9 525,606 
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Figure 5: Regions in China 
 

 

 

Notes:  The eastern region includes the following 11 provinces: Beijing, Tianjin, Hebei, 
Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan.  The 
central region includes the following 8 provinces: Shanxi, Heilongjiang, Jilin, Anhui, Jiangxi, 
Henan, Hunan, and Hubei.  The western region includes the following 12 provinces: 
Sichuan, Guizhou, Shaanxi, Inner Monglia, Yunnan, Qinghai, Ningxia and Xinjiang, 
Guangxi, Sichuan, Chongqing, and Tibet.  Macao, Taiwan and Hong Kong are not included 
in any region. 
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6.  Results 

The results of our instrumental variables model with city fixed effects and year effects, 

and with and without region-year effects are reported in Table 2.  We find that there is no 

significant relationship between the number of civilian vehicles and disposable income, 

which is different from previous studies (Huang, Cao and Li, 2012).  The variables that have 

a significant effect on the log number of civilian vehicles include the log public transit 

passenger load, which has a significant negative effect; the lagged value of the log number of 

civilian vehicles, which has a significant positive effect; and the log road area, which has a 

significant positive effect.  

The positive coefficient on road area in Table 2 shows that increasing the road area 

leads to an increase in the number of civilian vehicles in China. This result is consistent with 

the “fundamental law of traffic congestion”: while investment in infrastructure may lead to 

short-term reductions in congestion, in the long run it will be ineffective in the absence of 

efficient pricing (Beaudoin, Farzin and Lawell, 2015; Beaudoin, Farzin and Lin Lawell, 

forthcoming).   

In order to further explore whether increasing the road area can lead to traffic 

congestion, Brackman, Grarretsen and van Marrewijk (2001) compare the growth rate 

between civilian vehicles per capita and civilian vehicles per road length, and find that traffic 

congestion increases if civilian vehicles per capita increases more than civilian vehicles per 

road length. In our data set, civilian vehicles per capita increased 5.23 times from 2001 to 

2011, while civilian vehicles per road area increased 2.54 times; thus, since civilian vehicles 

per capita increased more than civilian vehicles per road length, this discordance could result 
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in traffic congestion.  Thus, according to our results, increasing road area is not an effective 

policy instrument to curb traffic congestion in China.  

In order to explore how the effects of public transportation and the built environment 

on the number of civilian vehicles vary by city population, we classify the cities into 5 

categories according to population, in accordance with the new standard made by state 

council of China (State Councile, P.R. CHINA, 2014): small cities (less than or equal to 0.5 

million people), medium cities (between 0.5 and 1 million people), big cities (between 1 and 

3 million people), extremely big cities (between 3 and 5 million people), and mega cities 

(more than 5 million people).  We then run our econometric model in equation (1) separately 

for each category of city. 

According to the results by city population in Table 3, we can find that the 

determinants of the number of civilian vehicles vary by city population. For small cities 

(specification 1), the road area has a significant positive effect on the number of civilian 

vehicles. For medium cities (specification 2), which account for 40 percent of all cities in 

China, increases in public transit passenger load decrease the number of civilian vehicles, 

which provides support for the Chinese government’s policy to develop public transportation 

to address the transportation issue. For big cities (specification 3), however, increasing the 

number of public buses increases the number of civilian vehicles also increased. For 

extremely big cities (specification 4), the results show that increases in the number of public 

buses and in land use diversity increase the number of civilian vehicles, but increases in the 

number of taxis and in road area decrease the number of civilian vehicles. For mega cities 

(specification 5), increases in disposable income increase the number of civilian vehicles.  
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In order to explore how the effects of public transportation and the built environment 

on the number of civilian vehicles vary by disposable income, we classify the cities into low 

and high income cities with 11,000 yuan as the cut-off point, which is close to the mean 

disposable income over all cities.  According to the results by income in Table 4, in high 

disposable income cities, both road area and land use diversity significantly increase the 

number of civilian vehicles.  For the low disposable income cities, none of the variables are 

significant. 

  We also estimate the model by urban development. According to the results in Table 5, 

in low development cities, increases in public transit passenger load decrease the number of 

civilian vehicles, but increases in road area increase the number of civilian vehicles. For the 

medium and high development cities, none of the public transportation or built environment 

variables has a significant effect. 
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Table 2. IV Results 

 

  Dependent variable is log number of civilian vehicles 
 (1) （2） 
Log number of taxis -0.00526 -0.00614 

 (0.0198) (0.0195) 

Log number of public buses 0.0908 0.0836 

 (0.0585) (0.0585) 

Log public transit passenger load -0.0749* -0.0618 

 (0.0357) (0.0350) 

Lagged log number of civilian vehicles 0.136*** 0.137*** 

 (0.0209) (0.0209) 

Log population density 0.0716 0.0577 

 (0.0634) (0.0626) 

Log disposable income -0.0571 0.00255 

 (0.0726) (0.0765) 

Log urban development -0.0406 -0.0310 

 (0.0412) (0.0406) 

Log road area 0.105** 0.101** 

 (0.0328) (0.0324) 

Log land use diversity 0.133 0.143 

 (0.0989) (0.0985) 

   
City fixed effects Y Y 
Year fixed effects Y Y 
Region*year effects N Y 
   
First-stage F-statistic for log number of public buses 4374.38   
First-stage F-statistic for log public transit passenger load 2990.47  
p-value from under-identification test [0.000] ***  
p-value from weak instrument-robust inference test [0.000] ***  
p-value from test for endogeneity of the log number of taxis [0.7075]  
   
Observations 2,560 2,455 
Number of cities 284 284 
R-squared 0.705 0.718 

Notes: Standard errors in parentheses.  We use the lagged values of the number of public 
buses and the public transit passenger load as instruments for the number of public buses and 
the public transit passenger load, respectively.  Significance codes: * p < 0.05, ** p < 0.01, *** 
p < 0.001. 
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Table 3. IV Results By Population 
 

Dependent variable is log number of civilian vehicles 

Population (million people) ≤0.5 (0.5, 1] (1,3] (3,5] >5 

 small cities medium cities big cities extremely big cities mega cities 

 (1) (2) (3) (4) (5) 

Log number of taxis 0.0180 -0.0412 0.0338 -0.614** 0.00883 

 (0.0518) (0.0331) (0.0335) (0.209) (0.0581) 

Log number of public buses 0.0459 0.0682 0.245* 0.603** 0.968 

 (0.156) (0.0996) (0.102) (0.204) (0.599) 

Log public transit passenger load -0.126 -0.118* 0.0115 0.193 0.194 

 (0.0877) (0.0504) (0.0800) (0.275) (0.407) 

Lagged log number of civilian vehicles 0.0554 0.133*** 0.147*** -0.373*** -0.0687 

 (0.0518) (0.0337) (0.0351) (0.0813) (0.151) 

Log population density 0.244 -0.0641 0.0105 0.586 1.171 

 (0.156) (0.147) (0.113) (0.450) (0.643) 

Log disposable income 0.265 -0.226 0.147 -0.315 1.476*** 

 (0.232) (0.121) (0.168) (0.276) (0.346) 

Log urban development -0.180 0.0381 -0.0650 0.448 -0.965 

 (0.143) (0.0818) (0.0653) (0.281) (0.504) 

Log road area 0.196** 0.0316 0.0741 -1.050*** 0.0122 

 (0.0709) (0.0596) (0.0637) (0.185) (0.225) 

Log land use diversity 0.0166 0.233 -0.0112 1.617* -0.282 

 (0.210) (0.144) (0.231) (0.733) (1.148) 

      

City fixed effects Y Y Y Y Y 

Year fixed effects Y Y Y Y Y 

Region*year effects Y Y Y Y Y 
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First-stage F-statistic for log number of public buses 497.90 1812.61 1960.76 177.34 179.64 

First-stage F-statistic for log public transit passenger load 311.13 990.85 1090.90 266.57 563.31 

p-value from under-identification test [0.000] *** [0.000] *** [0.000] *** [0.000] *** [0.000] *** 

p-value from weak instrument-robust inference test [0.000] *** [0.000] *** [0.000] *** [0.000] *** [0.010] * 

p-value from test for endogeneity of the log number of taxis [0.9485] [0.8949] [0.9515] [0.1390] [0.9804] 

      

Observations 468 971 853 68 72 

Number of cities 68 124 110 11 11 

R-squared 0.618 0.696 0.774 0.971 0.954 

Notes: Standard errors in parentheses.  We use the lagged values of the number of public buses and the public transit passenger load as instruments for the number of public 

buses and the public transit passenger load, respectively.  Significance codes: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 4. IV Results by Disposable Income 
 

Dependent variable is log number of civilian vehicles 

Disposable income (yuan) >11,000  ≤11,000  

 (1) (2) 

Log number of taxis 0.00942 0.00990 

 (0.0190) (0.0385) 

Log number of public buses 0.0203 0.160 

 (0.110) (0.189) 

Log public transit passenger load -0.0852 0.0330 

 (0.0656) (0.181) 

Lagged log number of private cars 0.00808 -0.0181 

 (0.0276) (0.0357) 

Log population density 0.00832 0.205 

 (0.0645) (0.133) 

Log disposable income -0.0158 0.0700 

 (0.141) (0.128) 

Log urban development 0.0288 -0.150 

 (0.0474) (0.0891) 

Log road area 0.0860* 0.0816 

 (0.0374) (0.0743) 

Log land use diversity 0.562*** 0.0459 

 (0.149) (0.161) 

   

City fixed effects Y Y 

Year fixed effects Y Y 

Region*year effects Y Y 

   

First-stage F-statistic for log number of public buses 1738.96 2707.27 

First-stage F-statistic for log public transit passenger load 1124.11 1904.19 

p-value from under-identification test [0.000] *** [0.000] *** 

p-value from weak instrument-robust inference test [0.000] *** [0.000 ]*** 

p-value from test for endogeneity of the log number of taxis [0.8718] [0.6403] 

   

Observations 1,281 1,142 

R-squared 0.734 0.395 

Number of cities 269 244 

Notes: Standard errors in parentheses.  We use the lagged values of the number of public buses and the public 

transit passenger load as instruments for the number of public buses and the public transit passenger load, 

respectively.  Significance codes: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 5. IV Results by Urban Development 
 

Dependent variable is log number of civilian vehicles 
urban development <0.1 [0.1, 0.2) ≥0.1 
 (1) (2) (3) 
Log number of taxis -0.00405 -0.0329 0.0145 
 (0.0232) (0.0604) (0.0400) 
Log number of public buses 0.130 -0.176 -0.143 
 (0.0689) (0.153) (0.111) 
Log public transit passenger load -0.0392* 0.0617 0.00940 
 (0.0195) (0.0763) (0.0554) 
Lagged log number of private cars 0.124*** 0.109* 0.115** 
 (0.0249) (0.0541) (0.0403) 
Log population density 0.121 -0.171 -0.200 
 (0.0765) (0.264) (0.168) 
Log disposable income 0.0339 0.0435 0.0593 
 (0.0946) (0.162) (0.142) 
Log urban development -0.0631 -0.000654 0.121 
 (0.0515) (0.199) (0.115) 
Log road area 0.0958** 0.0794 0.0877 
 (0.0360) (0.140) (0.0949) 
Log land use diversity 0.142 0.445 0.230 
 (0.111) (0.278) (0.225) 
    
City fixed effects Y Y Y 
Year fixed effects Y Y Y 
Region*year effects Y Y Y 
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First-stage F-statistic for log number of public buses 3717.46 547.58 239.74 
First-stage F-statistic for log public transit passenger load 2111.04 825.09 227.00 
p-value from under-identification test [0.000] *** [0.000] *** [0.000] *** 
p-value from weak instrument-robust inference test [0.000] *** [0.000] *** [0.000] *** 
p-value from test for endogeneity of the log number of taxis [0.5933] [0.5670] [0.9090] 
    
Number of observations 1,773 416 666 
Number of cities 222 69 88 
R-squared 0.699 0.723 0.755 
Notes: Standard errors in parentheses.  We use the lagged values of the number of public buses and the public transit passenger load as 
instruments for the number of public buses and the public transit passenger load, respectively.  Significance codes: * p < 0.05, ** p < 0.01, *** p 
< 0.001.
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7.  Conclusion  

China is facing increasingly serious environmental problems, and the number of 

civilian vehicles continues to increase even when the oil price increases and no matter how 

bad city traffic and pollution get.  In this paper we analyze the effects of public 

transportation and the built environment on the number of civilian vehicles in China using 

city-level data from 2001 to 2011. 

We draw several conclusions from our results.  First, we find that increasing the road 

area increases the number of civilian vehicles, which provides empirical support for the 

“fundamental law of traffic congestion” in China.  Thus, widening the roads or adding new 

roads are not effective tools for alleviating traffic congestion.  

Second, we find that increasing the public transit passenger load decreases the number 

of civilian vehicles.  Thus, improving public transportation to increase the public transit 

passenger load is an effective way to decrease the number of civilian vehicles. 

Third, in contrast to Cao et al. (2009), our results show that there is no significant 

relationship between civilian vehicles and per capita disposable income except in mega cities. 

Many people living in cities in China can now afford to buy a car.  But some mega cities 

have implemented government policies to limit the number civilian vehicles, such as a high 

license plate price or a license-plate lottery. For example, the cost of a license plate is over 

70,000 yuan higher in Shanghai. Thus, in mega cities, only the richer can afford the buy a car. 

Our fourth result is that land use diversity can increase the number of civilian vehicles, 

especially in the higher income cities and extremely big cities. In contrast, previous studies of 

developed countries have found that the land use diversity reduces vehicle travel (Ewing and 
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Cervero, 2001). 

Our fifth result is that for cities with lower urban development, the public transit 

passenger load has a significant negative effect on the number of civilian vehicles. The 

Chinese government should therefore improve its transit passenger load by better 

transportation planning, lowering the transit fee, and designating exclusive bus lanes.   

Possible avenues for future research include studying the emissions from cars in 

China, and analyzing and designing policies to alleviate car dependence. 
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