Policy Knowledge: Advocacy Organizations

Analytical policy knowledge is a set of beliefs that encompass perceptions of (a) the seriousness of various dimensions of a policy problem (e.g., the health effects of air pollution), the declining quality of health care, (b) the relative importance of various causes of these problems, and (c) the expected impacts of policy options for changing current conditions. In conflicts between advocacy organizations that pursue their interests through the policy-making process—whether including interest groups, corporations, administrative agencies, and associations of governments—debate surrounding the various elements of policy knowledge is often technical in nature. These debates frequently employ scientific research, technical policy analyses (such as benefit/cost analyses), and policy evaluations that follow scientific norms of data acquisition and analysis.

There are four main frameworks for examining the nexus between substantive policy knowledge and the political behavior of advocacy organizations: (a) a 'critical textbook' approach; (b) an 'ideological scripts' perspective; (c) the 'multiple streams' approach; and (d) the 'advocacy coalition framework.' All vary in their attention to the political process underlying public policy debates and the potential biases inherent in substantive policy information.

1. The Critics Textbook View of the Role of Science

This is basically a normative model, derived from certain fundamental principles of democratic theory. It assigns very distinct roles to three categories of actors in the policy process:

- 'Legitimate officials' are responsible for making basic policy decisions in a manner which reflects the distribution of values in society. They use scientific findings to help them understand trends in various problems, the factors affecting them, and the means of attacking the problems. Their basic role is to establish clear laws and budgetary priorities for implementation by agencies.

- 'Governmental agencies' are composed largely of civil servants who should be politically neutral (i.e., faithfully implement whatever the legislature decides) and who have a special role in fostering applied research in areas of interest to the agency. Political appointees within the agency are responsible for setting that the agency reflects the government's priorities—to the extent permitted by law.

- 'Scientists' are supposed to be neutral seekers of the truth. Their role is to understand the world and to present this information to policy-makers.

This is a normative model of how science should be used in making public policy, and many scientists involved in policy disputes do, in fact, view themselves as 'objective technicians' (Midler et al. 1976).

According to this model, the major problem impairing communication between scientists and government officials is that they inhabit two quite distinct communities with different value priorities, time-frames, and methods for resolving conflict (Dunn et al. 1979).
Proposals for reform thus focus on improving communication between the two communities by exchange programs, the development of facilitating or 'translating' institutions, etc.

The textbook model has substantial limitations in practice, in large part because most actors do not behave as the model indicates they should.

Elected officials seldom pass clear laws on contentious issues with substantial technical components because very few have the expertise to obtain a decent understanding of the technical issues. Instead, they tend to pass procedural or 'framework' laws which hand over the problem to an administrative agency without clear policy priorities.

Agency officials are seldom as neutral as the civil servants in the Weberian model of bureaucracy (Knoef and Miller 1987). Most agencies have a fairly clear overall mission which tells them to give priority to some values over others. Most officials who join the agency come to accept these priorities, whether out of self-selection or gradual indoctrination. Agencies are often dominated by members of a particular profession or scientific discipline who share the norms of colleagues outside the agency. Thus, most agencies can be expected to sponsor research consistent with their mission and to be skeptical of findings which cast doubt on its wisdom.

Scientists are often not neutral participants. Virtually all scientists operate within a specific 'paradigm,' i.e., a set of often implicit assumptions about basic causal assumptions and proper methods of investigation which guide research (Kuhn 1970). More importantly for our purposes, almost all scientific disciplines contain important normative assumptions which members often come to accept in an uncritical fashion. The normative assumptions behind welfare economics and cost-benefit analyses have been widely assailed (Knoef 1985). With respect to nuclear waste disposal, Burke and Jenkins-Smith (1993) provide evidence that biologists perceive significantly greater risks than physicists, chemists, and engineers. The latter are in their conduct in terms of dose-response curves, while biologists are more wary of the effects of any dose on living organisms.

Moreover, scientists are often drawn to applied—rather than basic—research because they want to help solve a particular problem. Having a demonstrable effect on policy normally requires the accumulation of results over an extended period of time (Weiss 1977). The more neutral and 'applied' scientists are unlikely to remain interested in an issue long enough to have such an impact. Thus the most active scientists in a particular dispute are likely to be those who have been involved the longest and who are most committed to defending a particular point of view.

The end result is that scientists who have something to contribute to important policy disputes are seldom neutral (Mazur 1981). The argument does not imply that they manipulate or falsify data. Instead, diverse, plenary paradigms, the values underlying their discipline, and their desire to solve particular problems affect the topics they choose to research, the variables they focus on, the methods they utilize, where they place the burden of proof in cases of uncertainty, and how quickly they present various results. Foremost, wildlife biologists are much more likely than engineers to look for species in trouble because their discipline norms define species extinction as a serious problem. They are more likely to look to human technology interventions as a likely explanation because they wish to respect the beauty of natural systems. In contrast, engineers assume they can improve on nature. Members within each discipline will readily present results which are congruent with these assumptions, while incongruent results are likely to be interpreted tentatively and in need of further verification (Brow 1977).

2. The Atheoretical Skeptic's View of the Role Scientists in Policy Disputes

Over the years, a number of studies have seriously questioned the textbook view that scientists participating in policy are completely neutral. For Weinberg (1973) argued that some topics—such as risk assessments of very improbable, catastrophic events—are essentially in the realm of 'transcending second, as argued above, there is increasing recognition that the topics chosen for research, the allocation of the burden of proof in areas of certainty, and the presentation of results are often chosen by scientists' disciplinary paradigms (Stewart 1986, organizational interests (Primack and von Hippel 1974, Jasansky 1987, and/or policy conerns (Nel 1971)).

Although suggestive, most of these studies have suffered from two serious limitations. First, they failed to articulate a comprehensive theory (theorX) of the role of 'advocacy science' in the policy process. Instead, they have usually limited themselves to identifying certain institutional-operational features that inhibit or exacerbate the role of advocacy (Mazur 1981). But there is very little recognition of the role of broader social, economic, and political organizations involved in most policy disputes. Second, almost all of this research has consisted of case studies or of rather traditional case studies which lack explicit theoretical grounds for case and variable selection and (b) utilize quite subjective methods data acquisition and analysis. The result has been plethora of interesting arguments and illustrative examples, but very little systematic, interrelated analysis of the extent of advocacy scientific factors affecting it, and its effects in the overall policy process.
3. The Multiple Streams Framework of the Policy Process

Drawing upon the "garbage can model" of organizational choice (Cohen et al. 1972), Kingdom (1984) developed an approach to agenda-setting and policy formulation that deals explicitly with the role of substantive policy information. In this view, policy-making can be conceptualized as three largely unrelated streams:

(a) A problem stream consisting of information about real-world problems and the effects of past governmental interventions. This would include large data bases of problem severity and causes gathered by governmental agencies and research organizations, as well as policy analysts of the benefits and costs of previous attempts to address these problems. This information is treated as relatively substantiated.

(b) A policy stream consisting of proposals to solve one or more problems. This is the province of policy makers in government think tanks and consulting firms, as well as many legislative staff. Kingdom notes they are policy analysts for actors to become interested in a particular solution and then to seek to apply it to a wide variety of problems. For the past 30 years, for example, many environmental economists have viewed simple observable solutions as the solutions to virtually all environmental problems (Tietenberg 1984).

(c) A political stream consisting of elections, legislative leadership concerns, and other open political competition. According to Kingdom, major policy reforms result when a "window of opportunity" joins the three streams. The window may be opened by a focusing event, such as an air-pollution crisis or oil spill, that dramatically illustrates the potential seriousness of a problem, or it can be opened by a political election that brings a new leader with a new agenda to power in response to the window, major policy changes will result if the policy community develops a proposals that has been considered at stake and effective and can find it advantageous to approve it.

The multiple streams approach has a number of promising features. It gives a prominent role to substantive policy information about real-world problems and the impacts of past governmental interventions. It was one of the first frameworks that treats researchers and policy analysts, as well as scientists and universities as potentially important political actors. And it recognizes the role of knowledge—particularly in the use of focusing events—in the policy process.

On the other hand, it has some limitations. First, it is not convinced that the policy streams are nearly isolated and independent. Kingdom argues, bureaucrats gather information on some aspects of a problem and not on others. The US Department of Agriculture gathered much more information on crop production and prices than it does on nitrogen runoff from fields into streams and groundwater basins. Second, the conditions creating windows of opportunity need further analysis. Third, the multiple streams framework contains virtually no falsifiable hypotheses, and thus very little has been learned about its strengths and limitations over time (cf. Kingdom 1995, Chap. 10).

4. An Advocacy Coalition Framework of the Policy Process

The advocacy coalition framework (ACF) starts from the premise that political elites consist of a specific problem or policy domain—such as transportation, education, health, or air pollution—will form relatively autonomous subsystems composed of interest-group leaders, administrative agency officials, researchers, and a few legislators with a specific interest in the topic. These subsystems (or policy communities) usually involve actors from multiple levels of government. Once a subsystem is formed, policy disputes become increasingly technical and specialized as actors learn more about the complexity of problems and solutions. In such a system, the role of legislators and political parties is primarily to aggregate the decisions made by policy specialists and to provide some general guidance.

The ACF views policy change over time as primarily the result of competition among advocacy coalitions within a policy subsystem (Sabatier and Jenkins-Smith 1993, 1999). An advocacy coalition consists of interest-group leaders, legislators, agency officials, researchers, and even journalists who share a set of basic beliefs (policy goals plus critical perceptions, of causal relationships) and engage in some degree of coordinated behavior in an effort to make governmental policy more consistent with those beliefs. Conflict among coalitions is mediated by "policy brokers," i.e., actors more concerned with fashioning an acceptable compromise than with achieving specific policy goals. While the framework focuses on competition among coalitions within the subsystem, changes external to the subsystem (such as fluctuations in socioeconomic conditions) and stable system parameters (such as constitutional rules) play an important role in major policy change.

The belief systems of advocacy coalitions are assumed to be hierarchically organized. At the highest, broadest level, the "deep core" of a coalition's belief system consists of fundamental, positively held beliefs, such as the familiar Left/Right scale, that operate across virtually all policy domains. Within any given policy subsystem, however, it is the "policy core" and the "secondary aspects" that are most critical. The former consists of basic position, some form of policy normative (e.g., the relative importance of different values, costs of environmental protection, or economic development), while others are a mixture of normative...
and empirical (e.g., the proper scope of governmental vs. market authority for realizing their values), that operate across most or all of the policy subsystems. These policy core positions are very resistant to change, are only intermittently the subject of policy debate, and are usually changed as a result of perceptions external to the subsystem, although long-term "enlightenment" may also play a role (Weiss 1977). Science-politics is a much more important role in the secondary aspects of coalitions' belief systems, as these involve disputes over the seriousness of a problem or the relative importance of various causal factors in different locales, the evaluation of various programs and institutions, and specific policy preferences. The ACA assumes that members of a coalition will readily accept new evidence consistent with their views and seek to discount information which conflicts with their perception of the seriousness of a problem, the positive importance of various factors affecting it, or the costs and benefits of different alternatives (Lord et al. 1979). The result is a "dialogue of the deaf" in which members of different coalitions talk past each other. Given that policy core beliefs are resistant to change, the composition of coalitions is hypothesized to be stable over periods of a decade or more.

The ACA explicitly rejects the assumption that most policy coalitions are static and that the linkages among groups of publics will be "untouchable." Some may well have strong policy preferences, at least initially. But the framework contends that, as conflict between coalitions increases and as the interrelationships among sets of beliefs become clearer over time, initially loose groups with amorphous beliefs coalesce into increasingly defined and homogeneous groups. In the process, most neutral actors, particularly university scientists, will drop out. The ACA thus contends that, in well-developed subsystems, most agency officials and researchers who are active will be members of several coalitions, and that core beliefs and action in concert to some degree (Sabbier and Zabore 2000).

Policy-oriented learning involves relatively enduring alterations of thought or behavioral intentions that result from experience and/or the acquisition of new information involving the perceptions of belief systems (Hisco 1974). Learning within coalitions is relatively easy, as members share the same values, premises and are looking for the most effective means to the goals. Learning outside an coalition is much more difficult, as people from each coalition have quite different values and distrust each other. Nevertheless, the original versions of the ACA hypothesized three conditions facilitating such learning (Sabbier and Jenkins-Smith 1983).

(a) Issues on which there is an immediate level of conflict. Issues have to be important enough to generate sufficient research—usually by members of several coalitions, as well as neutral. On the other hand, issues involving conflict between the core beliefs of different coalitions (e.g., the rights of non-humans versus the ability of humans to use resources and generate more heat than light. Learning across coalitions is thus more likely on issues involving important secondary aspects of the relevant belief systems. And this is all the more the case when the interactions are limited and the objects of study are not themselves actors in the policy debate.

(c) The existence of a forum that is (1) providing enough to force professionals from different coalitions to participate in and (2) dominated by scientists. The latter assures a general consensus on what is appropriate evidence for a given domain, whereas the former increases the scientific capacity of the forum, thus allowing both scientists and stakeholders to participate. An example of such a forum is the National Research Council or the professional association, agri-culture, in the case of the National Research Council. This is an example of a forum that is experiencing the same problem as the ACA. It is an example of a forum that is experiencing the same problem as the ACA. It is an example of a forum that is experiencing the same problem as the ACA. It is an example of a forum that is experiencing the same problem as the ACA. It is an example of a forum that is experiencing the same problem as the ACA. It is an example of a forum that is experiencing the same problem as the ACA. It is an example of a forum that is experiencing the same problem as the ACA.
policy simply by convincing a policy broker of the merits of its point of view without having to change the views of the other coalition(s).

3. Summary

This article has presented four conceptual frameworks that seek to understand the role of advocacy organizations in processing substantive policy information of a relatively technical nature in policy disputes, particularly in the USA. Both the civic textbook model and the multiple streams model view substantive policy information as being relatively unbiased, but the multiple streams has a much more sophisticated understanding of the policy process. In contrast, both the achievement skepticism and the ACF view substantive policy information as "filtered" through organizational, discursive, and coalition lenses, but the ACF has a much more sophisticated model of the policy process in intergovernmental policy subsystems. This sophistication, however, comes at the cost of parsimony. All four perspectives in combination can be useful in generating a clearer understanding of the role of policy knowledge in the behavior of advocacy organizations.

See also: Advocacy and Equity Planning, Advocacy in Anthropology, Interest Groups, Labor Unions, Lobbying, Policy Knowledge: Nonprofit Institutions, Think Tanks

Bibliography:
Heise H 1974 Social Policy in Britain and Sweden. Yale University Press, New Haven, CT
Inomata S 1987 Controlled boundaries in policy-relevant science. Social Studies of Science 17: 193–210

11567
Policy Knowledge: Advocacy Organizations

P. A. Sabater and M. A. Zafonte

Policy Knowledge: Censuses

A census is the count of the entire population of a nation, normally tabulated by jurisdictions within the nation, such as states, provinces, towns or villages. A modern census also collects social, economic, and housing characteristics as part of the population count. Census information is heavily used in state planning and in public policy. The social sciences, especially demography, sociology, history, and economics, draw from census data across a wide range of topics, including fertility, mortality, race and ethnicity, economic growth, and many others. However, with a few exceptions, the census itself has not been a research subject in social science; for example, there are no cross-national comparisons analyzing differing ways in which the census is involved in social, political, and economic processes.

I. History/Definition

The archaic definition of a census is "poll tax," indicating a tax assessment with the state's function of revenue extraction. Although the term census dates to ancient Rome, where it referenced the registration of citizens and their property, the idea of a regular national census predates Roman times. For example, Numbers, the fourth book of the Hebrew Bible, starts with the Lord instructing Moses: "Take ye the sum of all the congregation of the children of Israel, after their families, with the number of their names, every one unto his family" (Numbers 1:2). This is, in essence, a list of those able to go forth to war.

It is probable that taxation or military conscription, or both gave rise to other census operations indicated by archaeological records, such as the Nekhen (ancient Egyptian city) "counting place" built by the Pharaohs during the New Kingdom.

This site, near today's Luxor City, contained some of the earliest censuses on Earth, some by the inhabitants of the region, and an early census database. Other archaeological records from various ancient civilizations indicate similar preoccupation by the state with carrying out systematic statistical studies. In these ancient records, it is difficult to detect all of the state purposes that might have been served by a census. Certainly there was an interest in economic data, as is suggested by national records of harvest and grain storage. Ancient Census records, dating from the Han dynasty (206 BC to 220 AD), indicate that detailed population counts were made after each harvest. Subsequent systematic census records appear throughout Chinese history, and many scholars concur that China should be credited with the first comprehensive census (Dominey and Gao 1986).

There were attempts to establish a periodic census in early modern times, such as the ambitious seventeenth-century proposal for an annual census directed by France's Louis XIV.

Would it not be a great satisfaction to the king to know a designated woman every year the number of his subjects at large and by region, with all the resources, wealth and power of each place?... [would it not be] a beautiful and momentous honor for him to attain, in his own office, to review in a short time the present state of a great country, in which he is the head, and be able himself to know en masse the condition of what concerns his prestige, his wealth, and his strength? (cited in Scott 1998, p. 11).

In the modern period, however, it was the United States that initiated the modern period census. The Constitution (1787) requires that an enumeration of the population be taken every 10 years. This decennial census, first taken in 1790, served two state-building functions. One was periodically to reallot seats in the House of Representatives, the legislative branch, in which positions are allocated proportionate to state population in each of the member states. Because the population might grow at different rates from one census to the next, provision was made to take a census every decade and then to calculate how many fewer seats a state might have to go to every census. The second state-building task addressed the state's economic expansion. The country was expected to expand into new territories, and these areas were to join the states.